【题目】已知函数f(x)=loga(2x+1),g(x)=loga(1﹣2x)(a>0且a≠1)
(1)求函数F(x)=f(x)﹣g(x)的定义域;
(2)判断F(x)=f(x)﹣g(x)的奇偶性,并说明理由;
(3)确定x为何值时,有f(x)﹣g(x)>0.
【答案】
(1)解:要使函数有意义,则有 .
(2)解:F(x)=f(x)﹣g(x)
=loga(2x+1)﹣loga(1﹣2x),
F(﹣x)=f(﹣x)﹣g(﹣x)
=loga(﹣2x+1)﹣loga(1+2x)
=﹣F(x).
∴F(x)为奇函数.
(3)解:∵f(x)﹣g(x)>0
∴loga(2x+1)﹣loga(1﹣2x)>0
即loga(2x+1)>loga(1﹣2x).
①0<a<1, .
②a>1, .
【解析】(1)利用对数函数的性质求函数的定义域.(2)利用函数奇偶性的定义去判断.(3)若f(x)>g(x),可以得到一个对数不等式,然后分类讨论底数取值,即可得到不等式的解.
科目:高中数学 来源: 题型:
【题目】如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.
(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个推导过程:
①∵a,b∈R+,∴( )+( )≥2 =2;
②∵x,y∈R+,∴lgx+lgy≥2 ;
③∵a∈R,a≠0,∴( )+a≥2 =4;
④∵x,y∈R,xy<0,∴( )+( )=﹣[(﹣( ))+(﹣( ))]≤﹣2 =﹣2.
其中正确的是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: +y2=1. (Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1;
(Ⅱ)经过椭圆C的左焦点F1作直线l,直线l与椭圆C相交于A,B两点,若|AB|= ,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:方程 + =1表示焦点在y轴上的椭圆,命题q:双曲线 ﹣ =1的离心率e∈( , ),若命题p、q中有且只有一个为真命题,则实数m的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列4个命题: ①“若x+y=0,则x,y互为相反数”的逆否命题;
②“若a>b,则a2>b2”的逆命题;
③“若x≤﹣3,则x2﹣x﹣6>0”的否命题;
④“若ab是无理数,则a,b是无理数”的逆命题.
其中真命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 a=2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com