分析 (1)由指数函数的性质可得,y=ax在[-1,0]单调可得a-1+a0=3,可求,
(2)由指数函数的单调性质,即可求出x的范围.
解答 解:(1)由指数函数的性质可得,y=ax在[-1,0]单调,
∵函数y=ax在[-1,0]上的最大值与最小值的和为3,
∴a-1+a0=3
∴a=$\frac{1}{2}$,
(2)由(1)值,y=$(\frac{1}{2})^{x}$,
∵1≤ax<16,
∴$(\frac{1}{2})^{0}$=1≤$(\frac{1}{2})^{x}$<16=$(\frac{1}{2})^{-4}$,
∴-4<x≤0,.
点评 本题主要考查了指数函数的单调性的应用,属于基础试题,但若本题中给出的是最大值与最小值的差,就需要对a分a>1,0<a<1两种情况讨论了
科目:高中数学 来源: 题型:选择题
A. | f(sina)>f(cosb) | B. | f(sina)<f(cosb) | C. | f(cosa)<f(cosb) | D. | f(cosa)>f(cosb) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (4π+8)cm2 | B. | (4π+16)cm2 | C. | (3π+8)cm2 | D. | (3π+16)cm2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<c<b | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com