精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若的极值点,求a的值及的单调区间;

2)若对任意,不等式成立,求a的取值范围.

【答案】1上单减,在上单增. 2

【解析】

1)求导,由,求出的值,代回,分析单调性以及,求出的解,即可得出结论;

2)注意,若为增函数,不等式恒成立,若为减函数,则不等式不恒成立,将问题转化为研究上的单调性,求出,对分类讨论,求出正负情况,即可求出的取值范围.

解:(1

显然上单调递增,

所以当时,

时,

上单减,在上单增.

2

时,上单增,

,满足题意;

时,

上单调递增,

①若,则上单增,

,满足题意;

②若,则

故必存在使得

从而上单减,在上单增,

,与题意矛盾;

综上所述,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,轴上关于原点对称的两定点,点满足,点的轨迹为曲线

1)求的方程;

2)过的直线与交于点,线段的中点为的中垂线分别与轴、轴交于点,问是否成立?若成立,求出直线的方程;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论的单调性;

2)设,若上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列

1)当时,试求满足条件的数列的个数;

2)当,求所有满足条件的数列的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知点的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)设曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点距离之比为常数的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,的中点,则三棱锥的体积的最小值为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天津市某学校组织教师进行学习强国知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,若每答对1个问题,得1分;答错,得0分,最后按照得分多少排出名次,并分一、二、三等奖分别给予奖励.已知对给出的3个问题,教师甲答对的概率分别为p.若教师甲恰好答对3个问题的概率是,则________;在前述条件下,设随机变量X表示教师甲答对题目的个数,则X的数学期望为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别为abc,若a=5sinB),c=5O为△ABC的外心,G为△ABC的重心,则OG的最小值为( )

A.1B.C.1D.

查看答案和解析>>

同步练习册答案