精英家教网 > 高中数学 > 题目详情
5.数列{an}的前n项和Sn满足3Sn=an+4(n∈N*).
(1)求数列{an}的通项公式;
(2)若等差数列{bn}的公差为3,且b2a5=-1,求数列{bn}的前n项和Tn及Tn的最小值.

分析 (1)利用递推关系、等比数列的通项公式即可得出;
(2)由已知,得b2=-$\frac{1}{{a}_{5}}$=-8,又等差数列{bn}的公差d=3,可得bn,令bn≤0,解出即可得出,再利用等差数列的前n项和公式可得Tn

解答 解:(1)由3Sn=an+4,当n≥2时,3Sn-1=an-1+4,
两式相减得:3(Sn-Sn-1)=(an+4)-(an-1+4)=an-an-1
整理得$\frac{{a}_{n}}{{a}_{n-1}}$=-$\frac{1}{2}$(n≥2).
又3a1=a1+4,得a1=2,
∴数列{an}是以2为首项,以-$\frac{1}{2}$为公比的等比数列,
故有an=2×(-$\frac{1}{2}$)n-1
(2)由已知,得b2=-$\frac{1}{{a}_{5}}$=-8,又等差数列{bn}的公差d=3,
故bn=b2+(n-2)d=3n-14,b1=-8-3=-11.
因此当n≤4时,bn<0,当n≥5时,bn>0,
∴n=4时,{bn}的前n项和Tn最小,
最小值为T4=$\frac{4({b}_{1}+{b}_{4})}{2}$=-26.
Tn=$\frac{n(-11+3n-14)}{2}$=$\frac{n(3n-25)}{2}$=$\frac{3}{2}{n}^{2}$-$\frac{25}{2}$n.

点评 本题考查了递推关系的应用、等差数列与等比数列的通项公式及其前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知直线l:Ax+By+C=0(A≠0,B≠0),点M0(x0,y0).求证:
(1)经过点M0,且平行于直线l的直线方程是:A(x-x0)+B(y-y0)=0
(2)经过点M0,且垂直于直线l的直线方程:$\frac{{x-{x_0}}}{A}=\frac{{y-{y_0}}}{B}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知全集U=R,A={x|2a≤x≤a+3},B={x|x<1或x>5};
(1)若a=-1,求A∩∁UB,A∪B;
(2)若A⊆∁UB,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知p:|x-a|<4,q:-x2+5x-6>0,且q是p的充分而不必要条件,则a的取值范围为[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于x的方程($\frac{1}{2}$)x=$\frac{1}{1-a}$有一个正根,则实数a的取值范围是a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(3-2a)${\;}^{-\frac{2}{3}}$>a${\;}^{-\frac{2}{3}}$,则实数a的取值范围是(1,$\frac{3}{2}$)∪($\frac{3}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知三角形ABC的顶点坐标分别为:A(-1,5),B(5,5),C(6,-2),求其外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=cos(\frac{π}{2}-x)cosx+\sqrt{3}{sin^2}x$
(Ⅰ)求f(x)的最小正周期及单调递减区间;
(Ⅱ)求$x∈[\frac{π}{6},\frac{π}{2}]$时函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是偶函数又在(0,+∞)上单调递减的函数是(  )
A.y=x2+2B.y=|x|+1C.y=-|x|D.y=e|x|

查看答案和解析>>

同步练习册答案