精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为

(1)求椭圆C及圆O的方程;

(2)设直线l与圆O相切于第一象限内的点P

①若直线l与椭圆C有且只有一个公共点,求点P的坐标;

②直线l与椭圆C交于两点.若的面积为,求直线l的方程.

【答案】(1)椭圆C的方程为O的方程为

(2)①点P的坐标为②直线l的方程为

【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.

详解:解:(1)因为椭圆C的焦点为

可设椭圆C的方程为.又点在椭圆C上,

所以,解得

因此,椭圆C的方程为

因为圆O的直径为,所以其方程为

(2)①设直线l与圆O相切于,则

所以直线l的方程为,即

,消去y,得

.(*)

因为直线l与椭圆C有且只有一个公共点,

所以

因为,所以

因此,点P的坐标为

②因为三角形OAB的面积为,所以,从而

由(*)得

所以

因为

所以,即

解得舍去),则,因此P的坐标为

综上,直线l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线,斜率为的直线经过焦点,且与交于两点满足.

(1)求抛物线的方程;

(2)已知线段的垂直平分线与抛物线交于两点, 为线段的中点,记点到直线的距离为,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令.

(1)当时,求函数的单调区间及极值;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义在[01]上,并且同时满足以下两个条件的函数fx)称为G函数.

对任意的x∈[01],总有fx≥0

x1≥0x2≥0x1+x2≤1时,总有fx1+x2≥fx1+fx2)成立.已知函数gx=x2hx=2xb是定义在[01]上的函数.

1)试问函数gx)是否为G函数?并说明理由;

2)若函数hx)是G函数,求实数b组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.

(1)求数列{an}的通项公式;

(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)若的图像与直线相切,求

Ⅱ)若且函数的零点为,

设函数试讨论函数的零点个数.(为自然常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a≠0,函数

1)若,求的值;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种创新模式,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数 其中x是新样式单车的月产量(单位:辆),利润=总收益-总成本.

(1)试将自行车厂的利润y元表示为月产量x的函数;

(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步练习册答案