【题目】以原点为圆心,半径为的圆 与直线相切.
(1)直线过点且截圆所得弦长为求直线 的方程;
(2)设圆与轴的正半轴的交点为,过点作两条斜率分别为 的直线交圆于两点,且 ,证明:直线恒过一个定点,并求出该定点坐标.
【答案】(1)或 ;(2).
【解析】
分析:(1)先由直线和圆相切得到圆的方程,再由垂径定理列式,分直线斜率存在与不存在两种情况得到结果;(3)联立直线和圆,由韦达定理得到交点的坐标,由这两个点写出直线方程,进而得到直线过定点.
详解:
(1)∵圆与直线 相切,
∴圆心到直线的距离为,
∴圆的方程为:
若直线的斜率不存在,直线为 ,
此时直线截圆所得弦长为 ,符合题意;
若直线的斜率存在,设直线为 ,
由题意知,圆心到直线的距离为 ,解得:,
此时直线为,
则所求的直线为或
(2)由题意知, ,设直线,
与圆方程联立得: ,
消去得: ,
∴∴,
用换掉得到B点坐标
∴,
∴直线AB的方程为
整理得:
则直线AB恒过定点为.
科目:高中数学 来源: 题型:
【题目】如图,已知两条公路的交汇点处有一学校,现拟在两条公路之间的区域内建一工厂,在两公路旁(异于点)处设两个销售点,且满足,(千米),(千米),设.
(1)试用表示,并写出的范围;
(2)当为多大时,工厂产生的噪声对学校的影响最小(即工厂与学校的距离最远).
(注:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测量中得到的A样本数据如下:52,54,54,56,56,56,55,55,55,55.若B样本数据恰好是A样本数据都加6后所得数据,则A,B两样本的下列数字特征对应相同的是( )
A. 众数 B. 平均数
C. 中位数 D. 标准差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国共产党第十九次全国代表大会于2017年10月24日在北京召开,会议提出“决胜全面建成小康社会”.某市积极响应开展“脱贫攻坚”,为2020年“全面建成小康社会”贡献力量.为了解该市农村“脱贫攻坚“情况,从某县调查得到农村居民2011年至2017年家庭人均纯收入(单位:百元)的数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年人均纯收入(百元) | 41 | 45 | 48 | 56 | 60 | 64 | 71 |
注:小康的标准是农村居民家庭年人均纯收入达到8000元.
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,预测2020年该县农村居民家庭年人均纯收入能否达到“全面建成小康社会”的标准?
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.
记表示台机器在三年使用期内需更换的易损零件数,表示台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.
(1)若,求与的函数解析式;
(2)若要求 “需更换的易损零件数不大于”的频率不小于,求的最小值;
(3)假设这台机器在购机的同时每台都购买个易损零件,或每台都购买个易损零件,分别计算这台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买个还是个易损零件?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)试求关于的回归直线方程;
(附:回归方程中,
(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,
预测为何值时,小王销售一辆该型号汽车所获得的利润最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com