精英家教网 > 高中数学 > 题目详情
已知0<α<
π
2
<β<π且sin(α+β)=
5
13
,tan
α
2
=
1
2

(1)求cosα的值;
(2)证明:sinβ
5
13
分析:(1)利用二倍角的正切公式可求得tanα,结合0<α<
π
2
即可求得cosα的值;
(2)由于β=(α+β)-α,利用两角差的正弦结合已知即可求得sinβ的值,从而使结论得证.
解答:解:(1)将tan
α
2
=
1
2
代入tanα=
2tn
α
2
1-tan2
α
2
得:tanα=
4
3
(4分)
所以
sinα
cosα
=
4
3
sin2α+cos2α=1
,又α∈(0,
π
2
),
解得cosα=
3
5
.(6分)
(2)证明:∵0<α<
π
2
<β<π,
π
2
<α+β<
2
,又sin(α+β)=
5
13

所以cos(α+β)=-
12
13
,(8分)
由(1)可得sinα=
4
5
,(10分)
所以sinβ=sin[(α+β)-α]=
5
13
×
3
5
-(-
12
13
)×
4
5
=
63
65
5
13
.(14分)
点评:本题考查同角三角函数间的基本关系,考查两角和与差的正弦,考查分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知0<β<α<
π
2
,且cosα=
3
5
cos(α-β)=
12
13
,则cosβ=
56
65
56
65

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(c+1)x+c(c∈R).
(1)解关于x的不等式f(x)<0;
(2)当c=-2时,不等式f(x)>ax-5在(0,2)上恒成立,求实数a的取值范围;
(3)设g(x)=f(x)-ax,已知0<g(2)<1,3<g(3)<5,求g(4)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
+2
6
sinxcosx-2
2
sin2x,(x∈R)

(I)对f(x)的图象作如下变换:先将f(x)的图象向右平移
π
12
个单位,再将横坐标伸长到原来的2倍,纵坐标不变,得到函数g(x)的图象,求g(x)的解析式;
(II)已知0<x1
π
2
x2<π
,且g(x1)=
6
2
5
,g(x2)=2
,求tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴一模)已知0<x<
π
2
,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 0<x<2,则函数y=x(1-
x
2
)
的最大值是(  )

查看答案和解析>>

同步练习册答案