精英家教网 > 高中数学 > 题目详情
类比平面上的命题(m),给出在空间中的类似命题(n)的猜想.
(m)如果△ABC的三条边BC,CA,AB上的高分别为ha,hb和hc,△ABC内任意一点P到三条边BC,CA,AB的距离分别为Pa,Pb,Pc,那么
pa
ha
+
pb
hb
+
pc
hc
=1

(n)______.
设ha,hb,hc,hd为四面体S-ABC的四个面上的高,P为四面体内的任一点,
P到相应四个面的距离分别为Pa,Pb,Pc,pd,那么
pa
ha
+
pb
hb
+
pc
hc
+
pd
hd
=1

故答案为:设ha,hb,hc,hd为四面体S-ABC的四个面上的高,P为四面体内的任一点,
P到相应四个面的距离分别为Pa,Pb,Pc,pd,那么
pa
ha
+
pb
hb
+
pc
hc
+
pd
hd
=1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

类比平面上的命题(m),给出在空间中的类似命题(n)的猜想.
(m)如果△ABC的三条边BC,CA,AB上的高分别为ha,hb和hc,△ABC内任意一点P到三条边BC,CA,AB的距离分别为Pa,Pb,Pc,那么
pa
ha
+
pb
hb
+
pc
hc
=1

(n)
设ha,hb,hc,hd为四面体S-ABC的四个面上的高,P为四面体内的任一点,
P到相应四个面的距离分别为Pa,Pb,Pc,pd,那么
pa
ha
+
pb
hb
+
pc
hc
+
pd
hd
=1
设ha,hb,hc,hd为四面体S-ABC的四个面上的高,P为四面体内的任一点,
P到相应四个面的距离分别为Pa,Pb,Pc,pd,那么
pa
ha
+
pb
hb
+
pc
hc
+
pd
hd
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•盐城一模)在平面直角坐标平面内,不难得到“对于双曲线xy=k(k>0)上任意一点P,若点p在x轴、y轴上的射影分别为M、N,则|PM|-|PN|必为定值k”.类比于此,对于双曲线
x2
a2
-
y2
b2
(a>0,b>0)上任意一点P,类似的命题为:
若点P在两渐近线上的射影分别为M、N,则|PM|•|PN|必为定值
a2b2
a2+b2
若点P在两渐近线上的射影分别为M、N,则|PM|•|PN|必为定值
a2b2
a2+b2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

类比平面上的命题(m),给出在空间中的类似命题(n)的猜想.
(m)如果△ABC的三条边BC,CA,AB上的高分别为ha,hb和hc,△ABC内任意一点P到三条边BC,CA,AB的距离分别为Pa,Pb,Pc,那么数学公式
(n)________.

查看答案和解析>>

科目:高中数学 来源:北京期中题 题型:填空题

类比平面上的命题(m),给出在空间中的类似命题(n)的猜想.
(m)如果△ABC的三条边BC,CA,AB上的高分别为ha,hb和hc,△ABC内任意一点P到三条边BC,CA,AB的距离分别为Pa,Pb,Pc,那么
(n)(    ).

查看答案和解析>>

同步练习册答案