精英家教网 > 高中数学 > 题目详情
10.(1)已知cosα=-$\frac{4}{5}$,且α是△ABC的一个内角,求cos(α+$\frac{π}{6}$)的值.
(2)已知sin(φ+$\frac{π}{4}$)=$\frac{3}{5}$,且φ∈(${\frac{π}{2}$,π),求sinφ值.

分析 由条件利用同角三角函数的基本关系,两角差的三角公式,求得要求式子的值.

解答 解(1)∵α是△ABC的一个内角,∴α∈(0,π),cosα=-$\frac{4}{5}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{3}{5}$,
∴cos(α+$\frac{π}{6}$)=cosαcos$\frac{π}{6}$-sinαsin$\frac{π}{6}$=-$\frac{4\sqrt{3}+3}{10}$.
(2)∵$ϕ∈({\frac{π}{2},π})∴\frac{π}{4}+ϕ∈({\frac{3π}{4},\frac{5π}{4}})$,∵$sin(ϕ+\frac{π}{4})=\frac{3}{5}∴cos({ϕ+\frac{π}{4}})=-\frac{4}{5}$,
∴sinφ=sin[(φ+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(φ+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(φ+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{3}{5}$•$\frac{\sqrt{2}}{2}$-(-$\frac{4}{5}$)•$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.

点评 本题主要考查同角三角函数的基本关系,两角差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)对任意的x∈R满足f′(x)-f(x)ln2>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(  )
A.4f(-2)>f(0)B.2f(1)>f(2)C.2f(-2)<f(-1)D.2f(0)>f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x是一个正数,记不超过x的最大的正整数为[x],令{x}=x-[x],且{x},[x],x成等比数列,则x=$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若角765°的终边上有一点(4,m),则m的值是(  )
A.1B.±4C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.边长为4的等边△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$的值为(  )
A.8B.-8C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从数字1,2,3,4中任取2个,组成一个没有重复数字的两位数,则这个两位数大于20的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,若sinA+cos(A+$\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$,b+c=4,则△ABC周长的取值范围是(  )
A.[6,8)B.[6,8]C.[4,6)D.(4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,cosAcosB>sinAsinB,则角C为(  )
A.锐角B.直角C.钝角D.无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.向量$\overrightarrow{a}$与$\overrightarrow{b}$=(1,2)满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$|=2$\sqrt{5}$,则向量$\overrightarrow{a}$=(4,-2),或(-4,2).

查看答案和解析>>

同步练习册答案