精英家教网 > 高中数学 > 题目详情
5.设数列{an}是等差数列,前n项和为Sn,{bn}是单调递增的等比数列,b1=2是a1与a2的等差中项,a3=5,b3=a4+1,若当n≥m时,Sn≤bn恒成立,则m的最小值为4.

分析 根据条件,利用方程关系分别求出数列通项公式和前n项和公式,进行比较即可得到结论.

解答 解:∵b1=2是a1与a2的等差中项,
∴a1+a2=4,
∵a3=5,
∴$\left\{\begin{array}{l}{2{a}_{1}+d=4}\\{{a}_{1}+2d=5}\end{array}\right.$,解得a1=1,d=2,
则a4=a3+d=5+2=7,
则Sn=n+$\frac{n(n-1)}{2}×2$=n2
则b3=a4+17+1=8,
∵b1=2,
∴公比q2=$\frac{{b}_{3}}{{b}_{1}}=\frac{8}{2}=4$,
∵{bn}是单调递增的等比数列,
∴q=2,
则bn=2•2n-1=2n
当n=1时,S1≤b1成立,
当n=2时,S2≤b2成立,
当n=3时,S3≤b3不成立,
当n=4时,S4≤b4成立,
当n>4时,Sn≤bn恒成立,
综上当n≥4时,Sn≤bn恒成立,
故m的最小值为4,
故答案为:4

点评 本题主要考查等比数列和等差数列通项公式和前n项和公式的应用,考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.直线xcosα+ysinα=0的极坐标方程为$θ=α-\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项.数列{bn}的前n项和Sn=n2,n∈N*
(1)求数列{an}的通项公式;
(2)若不等式λbn≤Sn+6对任意n∈N*恒成立,求实数λ的取值范围;
(3)若cn=$\left\{\begin{array}{l}{\frac{1}{2}({b}_{n}+1),n为偶数,n∈{N}^{*}}\\{\sqrt{{a}_{n}},n为偶数,n∈{N}^{*}}\end{array}\right.$从数列{cn}中取出若干项(奇数项与偶数项均不少于两项),将取出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点.
(1)根据三视图,画出该几何体的直观图;
(2)在直观图中,①证明PD∥面AGC;②求此几何体的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$,a=f(ln2014),b=f(ln$\frac{1}{2014}$),则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“?x∈R,|x-2|>3”的否定是:?x0∈R,|x0-2|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=e|lnx|-|x-2|-ax有3个不同的零点(其中e为自然对数的底数),则实数a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知20名学生某次数学考试成绩(单位:分)的频率分布直方图如下图所示.则成绩落在[50,60)与[60,70)中的学生人数分别为(  )
A.2,3B.2,4C.3,2D.4,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\frac{1-ta{n}^{2}15°}{2tan15°}$等于(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.1D.-1

查看答案和解析>>

同步练习册答案