精英家教网 > 高中数学 > 题目详情
1.定义在实数集R上的函数y=f(x)满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0(x1≠x2),若f(5)=-1,f(7)=0,那么f(-3)的值可以为(  )
A.5B.-5C.0D.-1

分析 定义在实数集R上的函数y=f(x)满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0(x1≠x2),可得函数f(x)在R上单调递增.由-3<5<7,f(5)=-1,f(7)=0,即可得出结论.

解答 解:∵定义在实数集R上的函数y=f(x)满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0(x1≠x2),
∴函数f(x)在R上单调递增.
∵-3<5<7,f(5)=-1,f(7)=0,
∴f(-3)<-1,
故选:B.

点评 本题考查了抽象函数的单调性,考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在四面体A-BCD中,E,F分别是AB,CD的中点,若AC,BD所成的角为60°,且BD=AC=1,求EF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线y=kx+3与圆(x-1)2+(y+2)2=4相交于M,N两点,若$MN≥2\sqrt{3}$,则实数k的取值范围是$({-∞,-\frac{12}{5}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆C1:x2+y2-4x-4y-1=0,圆C2:x2+y2+2x+8y-8=0,圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x3+ax2+2在x=1时取得极值.
(1)求a;
(2)求f(x)在$[-\frac{1}{2},2]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P(x,y)在圆x2+y2-6x-6y+14=0上.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2+2x+3的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.班上有四位同学申请A,B,C三所大学的自主招生,若每位同学只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有2人申请A大学或B大学的概率;
(2)求申请C大学的人数X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α,β是方程2x2+2ax+b=0的两根,且α∈[0,1],β∈[1,2],a,b∈R,则$\frac{{5{a^2}+4ab+{b^2}}}{{2{a^2}+ab}}$的范围[2,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条弦的长等于半径,则这条弦所对的圆心角是____弧度.(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案