精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数是自然对数的底数,曲线在点处的切线与轴平行

1的值

2的单调区间

3其中的导函数证明:对任意

【答案】12单调递增区间是单调递减区间是3证明见解析

【解析】

试题分析:1求导可得 21知,,再利用导数工具进行求解32可知,当,故只需证明时成立,再利用导数工具进行证明

试题解析:1由已知

21知,

上是减函数

从而

从而

综上可知,的单调递增区间是单调递减区间是

32可知,当

故只需证明时成立

所以当取得最大值

所以

综上,对任意

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在处的切线方程为.

(1)判断函数的单调性;

(2)已知,且,若对任意,任意 中恰有一个恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f(0)≠0,f(1)=2,当x>0,f(x)>1,且对任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求证:对任意x∈R,都有f(x)>0;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)求不等式f(3﹣2x)>4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[ 120 , 130),[130 140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 150]内的学生中选取的人数应为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x≤5},集合B={ >0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣ (a∈R)
(1)判断函数f(x)的单调性并给出证明;
(2)若函数f(x)是奇函数,则f(x)≥ 当x∈[1,2]时恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)为奇函数,且相邻两对称轴间的距离为.

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查了50人,并将调查情况进行整理后制成下表:

(1)规定:年龄在内的为青年人,年龄在内的为中年人,根据以上统计数据填写下面列联表:

(2)能否在犯错误的概率不超过0.025的前提下,认为赞成“车辆限行”与年龄有关?

参考公式和数据: ,其中.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数存在两个极值点.

(Ⅰ)求实数a的取值范围;

(Ⅱ)设分别是的两个极值点且,证明:

查看答案和解析>>

同步练习册答案