精英家教网 > 高中数学 > 题目详情
11.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=AC=2A1C1=2,D为BC中点.
(Ⅰ)证明:平面A1AD⊥平面BCC1B1
(Ⅱ)求直线BB1与面AA1CC1所成角
(Ⅲ)求二面角A-CC1-B的大小.

分析 (Ⅰ)推导出A1A⊥BC,BC⊥AD,从而BC⊥平面A1AD,由此能证明平面A1AD⊥平面BCC1B1
(Ⅱ)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出直线BB1与面AA1CC1所成角.
(Ⅲ)求出平面CC1B的法向量,平面ACC1的法向量利用向量法能求出二面角A-CC1-B的大小.

解答 证明:(Ⅰ)∵A1A⊥平面ABC,BC?平面ABC,∴A1A⊥BC.
∵AB=AC=2A1C1=2,D为BC中点,∴BC⊥AD,
∵AA1∩AD=A,∴BC⊥平面A1AD,
∵BC?平面BCC1B1
∴平面A1AD⊥平面BCC1B1
解:(Ⅱ)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
B(2,0,0),B1(1,0,$\sqrt{3}$),$\overrightarrow{B{B}_{1}}$=(-1,0,$\sqrt{3}$),
面AA1CC1的法向量$\overrightarrow{AB}$=(2,0,0),
设直线BB1与面AA1CC1所成角为θ,
则cosθ=$\frac{|\overrightarrow{B{B}_{1}}•\overrightarrow{AB}|}{|\overrightarrow{B{B}_{1}}|•|\overrightarrow{AB}|}$=$\frac{2}{2×2}=\frac{1}{2}$,
θ=60°,
∴直线BB1与面AA1CC1所成角为60°.
(Ⅲ)C(0,2,0),$\overrightarrow{B{B}_{1}}$=(-1,0,$\sqrt{3}$),$\overrightarrow{BC}$=(-2,2,0),
设平面CC1B的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{B{B}_{1}}=-x+\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-2x+2y=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=($\sqrt{3},\sqrt{3},1$),
平面ACC1的法向量$\overrightarrow{m}$=(1,0,0),
设平面二面角A-CC1-B的平面角为α,
则cosα=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{7}}=\frac{\sqrt{21}}{7}$,
∴$α=arccos\frac{\sqrt{21}}{7}$.
∴二面角A-CC1-B的大小为arccos$\frac{\sqrt{21}}{7}$.

点评 本题考查面面垂直的证明,考查线面角的求法,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=(-1,1).
(Ⅰ)λ为何值时,$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直?
(Ⅱ)若(m$\overrightarrow{a}$+n$\overrightarrow{b}$)∥$\overrightarrow{c}$,求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2$\frac{x+a}{x-1}$(a>0)为奇函数.
(1)求实数a的值;
(2)若x∈(1,4],f(x)>log2$\frac{m}{x-1}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)
x-$\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,$\frac{π}{2}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(1)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置,并求直线DE到平面AB1C1的距离;如果不存在,请说明理由;
(2)求截面DEG与底面ABC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{7}{3}$C.2D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>0,则a+$\frac{8}{2a+1}$的最小值为(  )
A.2$\sqrt{2}$B.4C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若$|{\overrightarrow{AB}}|=3,|{\overrightarrow{AC}}|=4$,∠BAC=30°,则$\overrightarrow{AB}•\overrightarrow{AC}$=6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{2}{x-1}$,x∈[2,6]
(1)求证:函数f(x)是区间[2,6]上的减函数;
(2)求函数f(x)在区间[2,6]内的最大值与最小值.

查看答案和解析>>

同步练习册答案