精英家教网 > 高中数学 > 题目详情
已知函数f(x)=f1(x)=
16(x-0.25)2,0≤x≤0.5
16(x-0.75)2,0.5≤x≤1
,当n≥2时,fn(x)=f(fn-1(x))(x∈[0,1].则方程f2012(x)=
1
3
x
的实数解的个数是
42012
42012
分析:先考虑f1(x)=
1
3
x
f2(x)=
1
3
x
的实数解的个数,由此归纳出一般结论.
解答:解:由题意,f1(x)=
1
3
x
的实数解的个数是4个;

∵f2(x)=f(f1(x))x∈[0,1],∴在[0,1]上有4个形状为f1(x)在[0,1]上的图象
f2(x)=
1
3
x
的实数解的个数是42=16个
由此可归纳方程f2012(x)=
1
3
x
的实数解的个数是42012
故答案为:42012
点评:本题考查方程解的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)<0,且f(x•y)=f(x)+f(y).
(Ⅰ)证明f(x)在定义域上是减函数;
(Ⅱ)如果f(
3
3
)=1
,求满足不等式f(x)-f(
1
x-2
)≥-2
的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
12
ax2
+bx(a>0)且f′(1)=0,
(1)试用含a的式子表示b,并求函数f(x)的单调区间;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)为函数f(x)图象上不同两点,G(x0,y0)为AB的中点,记AB两点连线斜率为K,证明:f′(x0)≠K.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),当x、y∈R时,恒有f(x)-f(y)=f(x-y).
(Ⅰ)求证:f(x)是奇函数;
(Ⅱ)如果x<0时,f(x)>0,并且f(2)=-1,试求f(x)在区间[-2,6]上的最值;
(Ⅲ)在(Ⅱ)的条件下,对任意x∈[-2,6],不等式f(x)>m2+am-5对任意a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:河南模拟 题型:解答题

已知函数f(x)=lnx-
1
2
ax2
+bx(a>0)且f′(1)=0,
(1)试用含a的式子表示b,并求函数f(x)的单调区间;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)为函数f(x)图象上不同两点,G(x0,y0)为AB的中点,记AB两点连线斜率为K,证明:f′(x0)≠K.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=xlnx.

(1)求函数f(x)的单调区间和最小值;

(2)当b>0时,求证:bb(其中e=2.718 28…是自然对数的底数);

(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.

(1)求和c的值.

(2)求函数f(x)的单调递减区间(用字母a表示).

(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.

查看答案和解析>>

同步练习册答案