【题目】已知椭圆: 的离心率为,点在椭圆上, 为坐标原点.
(1)求椭圆的方程;
(2)已知点为椭圆上的三点,若四边形为平行四边形,证明:四边形的面积为定值,并求该定值.
【答案】(1);(2).
【解析】试题分析:(1)由椭圆离心率,可得 ,将 代入椭圆方程可得 ,则椭圆方程可求;
(2)分情况讨论,当不存在时, 方程为: 或,可得 .
当直线的斜率存在时,设直线方程为: , , .
将的方程代入得: ,可求得
由得: ,
将点坐标代入椭圆方程得: .又到直线的距离,,最后由
.
综上,平行四边形的面积为定值.
试题解析:
(1)由,得,
将代入椭圆的方程可得,所以,
故椭圆的方程为.
(2)当直线的斜率不存在时, 方程为: 或,
从而有,
所以.
当直线的斜率存在时,
设直线方程为: , , .
将的方程代入整理得: ,
所以, ,
,
由得: ,
将点坐标代入椭圆方程得: .
点到直线的距离,
,
.
综上,平行四边形的面积为定值.
科目:高中数学 来源: 题型:
【题目】某学校要用甲、乙、丙三辆校车把教职工从老校区接到校本部,已知从老校区到校本部有两条公路,校车走公路①时堵车的概率为,校车走公路②时堵车的概率为p.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆校车是否堵车相互之间没有影响.
(1)若三辆校车中恰有一辆校车被堵的概率为,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中, 平面, 平面,且是边长为4的等边三角形, , 与平面所成角的余弦值为, 是线段上一点.
(Ⅰ)若是线段的中点,证明:平面平面;
(Ⅱ)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)用二次函数回归模型拟合与的关系,可得回归方程:,
经计算二次函数回归模型和线性回归模型的分别约为和,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.
参数数据及公式:,,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:
(1)若用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)用二次函数回归模型拟合与的关系,可得回归方程: ,计算二次函数回归模型和线性回归模型的分别约为0.75和0.97,请用说明选择个回归模型更合适,并用此模型预测超市广告费支出为8万元时的销售额.
参考数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是__________.(写出所有正确命题的序号)
①已知,“且”是“”的充要条件;
②已知平面向量,“且”是“”的必要不充分条件;
③已知,“”是“”的充分不必要条件;
④命题:“,使且”的否定为:“,都有且”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com