精英家教网 > 高中数学 > 题目详情
在等腰梯形ABCD中,ADBCADBC,∠ABC=60°,NBC的中点,将梯形ABCDAB旋转90°,得到梯形ABCD′(如图).

(1)求证:AC⊥平面ABC′;
(2)求证:CN∥平面ADD′;
(3)求二面角A-CN-C的余弦值.
(1)见解析(2)见解析(3)-
(1)证明 ∵ADBCNBC的中点,∴ADNC,又ADBC,∴四边形ANCD是平行四边形,∴ANDC,又∠ABC=60°,∴ABBNAD
∴四边形ANCD是菱形,∴∠ACBDCB=30°,
∴∠BAC=90°,即ACAB,又平面CBA⊥平面ABC,平面CBA∩平面ABCAB,∴AC⊥平面ABC′.
(2)证明:∵ADBCAD′∥BC′,ADAD′=ABCBC′=B,∴平面ADD′∥平面BCC′,又CN?平面BCC′,∴CN∥平面ADD′.
(3)解:∵AC⊥平面ABC′,AC′⊥平面ABC.
如图建立空间直角坐标系,

AB=1,则B(1,0,0),C(0,,0),C′(0,0,),
N,∴′=(-1,0,),′=(0,-),设平面CNC的法向量为n=(xyz),则
z=1,则xy=1,∴n=(,1,1).
AC′⊥平面ABC,∴平面CAN⊥平面ABC,又BDAN,平面CAN∩平面ABCAN,∴BD⊥平面CANBDAN交于点OO则为AN的中点,O,∴平面CAN的法向量.
∴cos〈n〉=
由图形可知二面角A­CN­C为钝角,
所以二面角A­CN­C的余弦值为-
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4

(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是直角梯形,,且,顶点在底面内的射影恰好落在的中点上.

(1)求证:
(2)若,求直线所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形为直角梯形,为等边三角形,且平面平面中点.

(1)求证:
(2)求平面与平面所成的锐二面角的余弦值;
(3)在内是否存在一点,使平面,如果存在,求的长;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知=(3,4),=(-2,y),且3与2共线,且y的为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线的法向量为,则该直线的倾斜角为        .(用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,正方体ABCD-A1B1C1D1的棱长为aMN分别为A1BAC上的点,A1MANa,则MN与平面BB1C1C的位置关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间直角坐标系中有一点,点平面内的直线    上的动点,则两点的最短距离是(   )
A.B.C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平行六面体中,    

查看答案和解析>>

同步练习册答案