【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,21时29分食甚,22时07分生光,23时11分复圆.月全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”在食既时刻开始,生光时刻结束.小明准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是________.
科目:高中数学 来源: 题型:
【题目】已知某企业生产某种产品的年固定成本为万元,且每生产吨该产品需另投入万元,现假设该企业在一年内共生产该产品吨并全部销售完.每吨的销售收入为万元,且
(1)求该企业年总利润(万元)关于年产量(吨)的函数关系式:
(2)当年产量为多少吨时,该企业在这一产品的生产中所获年总利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了比较两位运动员甲和乙的打靶成绩,在相同条件下测得各打靶次所得环数(已按从小到大排列)如下:
甲的环数:
乙的环数:
(1)完成茎叶图,并分别计算两组数据的平均数及方差;
(2)(i)根据(1)的结果,分析两人的成绩;
(ii)如果你是教练,请你作出决策:根据对手实力的强弱分析应该派两人中的哪一位上场比赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:
(1)在一年中随机取一个月的销售量,估计销售量不足的概率;
(2)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;
(3)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号,某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程;
(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数的分布列和数学期望.
(参考公式:线性回归方程中最小二乘估计分别为)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.
(1)求抛物线C的方程;
(2)设的中垂线在轴上的截距为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到距离的最大值及该点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com