精英家教网 > 高中数学 > 题目详情
8.盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色不同的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{3}$

分析 算出基本事件的总个数n=C42=6,再算出事件A中包含的基本事件的个数m=C31=3,即可算出事件A的概率.

解答 解:∵总个数n=C42=6,
∵事件A中包含的基本事件的个数m=C31=3
∴P=$\frac{3}{6}$=$\frac{1}{2}$.
故选:A.

点评 本题考查等可能事件的概率计算,是简单题,解题注意正确计算即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=$\frac{1}{2}$x,求使f(x)=-$\frac{1}{2}$在[0,2009]上的所有x的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$(n∈N*).
(1)证明:对一切n∈N*有an<an+1
(2)证明:当n≥2时,$\frac{4n-1}{9n}$<an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若O在△ABC的内部,且满足$\overrightarrow{AO}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,求△AOC与△ABC的面积之比为1:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$).求f(x)的最小正周期及其图象的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法中正确的有(  )个
①算法只能用图形的形式来描述;
②同一问题可以有不同的算法;
③一个算法可以无止境的运算下去;
④算法要求是一步步执行,每一步都能得到唯一结果;
⑤条件结构中的两条路径可以同时执行.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设m∈R.在平面直角坐标系中,已知向量$\overrightarrow{a}$=(mx,y+1),向量$\overrightarrow{b}$=(x,y-1),$\overrightarrow{a}$⊥$\overrightarrow{b}$,动点M(x,y)的轨迹为E,O是坐标原点
(1)求轨迹E的方程,并说明该方程所表示曲线的形状
(2)已知m=$\frac{1}{4}$,直线l与该曲线交于A、B两点,若OA⊥OB,求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-x-1,x≤0}\end{array}\right.$,设曲线y=f(x)在点(1,0)处的切线为l,记x轴、l以及曲线y=f(x)所围成的封闭区域为D,则z=x-3y(点(x,y)∈D)的最大值是(  )
A.3B.4C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式组$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$的解集为{x|-2<x<4},则a的取值范围是(  )
A.a≤-4B.a≥-4C.a≤8D.a≥8

查看答案和解析>>

同步练习册答案