科目:高中数学 来源: 题型:填空题
设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),下面关于f(x)的判定:其中正确命题的序号为 .
①f(4)=0;
②f(x)是以4为周期的函数;
③f(x)的图象关于x=1对称;
④f(x)的图象关于x=2对称.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
下列说法正确的是______________.(填序号)
① 函数是其定义域到值域的映射;
② 设A=B=R,对应法则f:x→y=,x∈A,y∈B,满足条件的对应法则f构成从集合A到集合B的函数;
③ 函数y=f(x)的图象与直线x=1的交点有且只有1个;
④ 映射f:{1,2,3}→{1,2,3,4}满足f(x)=x,则这样的映射f共有1个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com