精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义域为的奇函数.

(1)若,求使不等式对一切恒成立的实数的取值范围;

(2)若函数的图象过点,是否存在正数,使函数上的最大值为0?若存在,求出的值;若不存在,请说明理由.

【答案】(1) (2)见解析

【解析】

(1)由f(1)>0得aa>0,求出a>1,判断函数的单调性fx)=axaxR上的增函数,不等式整理为x2﹣(k+1)x+1>0对一切x∈R恒成立,利用判别式法求解即可;

(2)把点代入求出a=2,假设存在正数m,构造函数设s=2x﹣2x则(2x﹣2x2m(2x﹣2x)+2=s2ms+2,对底数m进行分类讨论,判断m的值.

(1) ,由,又 .

,函数是奇函数,∴

上为增函数,即 对一切恒成立,

恒成立,有,∴

,所以的取值范围是

(2)假设存在正数符合,∵

,

(i) 若,则函数上最小值为1

∵ 对称轴 (舍)

(ii) 若,则上恒成立,且最大为1,最小值大于0

此时故不合题意

无解

综上所述,不存在正数满足条件。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在梯形中,的中点,的交点,以为折痕把折起,使点到达点的位置,且,如图2.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】临川一中实验学校坐落在抚州火车站附近,在校区东边(如图),有一直径为8米的半圆形空地,现计划移植一古树,但需要有辅助光照.半圆周上的处恰有一可旋转光源满足古树生长的需要,该光源照射范围是,点在直径上,且.

1)若,求的长;

2)设,求该空地种植古树的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.

1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱柱中,底面边长为,侧棱长为.

1)求证:平面平面

2)求直线与平面所成的角的正弦值;

3)设为截面-点(不包括边界),求到面,面,面的距离平方和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若对任意的实数都有成立,求实数的值;

2)若在区间上为单调增函数,求实数的取值范围;

3)当时,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)log4(4x1)kx(k∈R)是偶函数.

(1)k的值;

(2)g(x)log4,若函数f(x)g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角三棱柱分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)若直线和平面所成角的正弦值等于求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的.

(1)a,b的值;

(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.

查看答案和解析>>

同步练习册答案