精英家教网 > 高中数学 > 题目详情
8.设α={-1,1,$\frac{1}{2}$},则使函数y=xα的定义域为R且为奇函数的所有α的值为1.

分析 利用幂函数的性质,即可得出结论.

解答 解:由题意,函数y=x-1的定义域不为R;函数y=x的定义域为R且为奇函数;函数y=${x}^{\frac{1}{2}}$的定义域为[0,+∞),
故答案为1.

点评 本题考查幂函数的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知圆C1:x2+y2=2和圆C2,直线l与圆C1相切于点(1,1);圆C2的圆心在射线2x-y=0(x≥0)上,圆C2过原点,且被直线l截得的弦长为4$\sqrt{3}$.
(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设集合A={x|2≤x<4},B={x|3x-7≥8-2x}.
(1)求集合B,A∪B;   
(2)求(∁RA)∩B,A∪(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{1}&{-1}\\{z}&{zi}\end{array}|$=2的复数z=2-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的偶函数f(x)=$\frac{ax+b}{{x}^{2}+c}$的图象如图所示,则实数a、b、c的大小关系是b>c>a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设不等式$\left\{\begin{array}{l}x≥0\\ y≥0\\ y≤-kx+4k\end{array}\right.$,(其中k>0)在平面直角坐标系中所表示的区域为Ω,其面积为S,若C:(x-4)2+(y-3)2=4与区域Ω有公共点时,求S的最小值为4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A={-2,3,4,6},集合B={3,a,a2},若B⊆A,则实数a=2;若A∩B={3,4},则实数a=2或4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设随机变量ξ服从正态分布N(3,σ),若P(ξ>c+1)=P(ξ<c-1),则c=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有下列四个命题:
①“若xy=1,则x,y互为倒数”的逆命题;
②“面积相等的三角形全等”的否命题;
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;
④“若A∩B=B,则A=B”的逆否命题.
其中真命题为(  )
A.①②B.②③C.①④D.①②③

查看答案和解析>>

同步练习册答案