精英家教网 > 高中数学 > 题目详情
20.函数$f(x)=\left\{\begin{array}{l}x(1+x),_{\;}^{\;}x≥0\\ x(1-x){,_{\;}}x<0\end{array}\right.$的单调性为增函数;奇偶性为奇函数.

分析 根据已知画出分段函数的图象,数形结合可得函数的单调性和奇偶性.

解答 解:函数$f(x)=\left\{\begin{array}{l}x(1+x){,}_{\;}^{\;}x≥0\\ x(1-x){,}_{\;}x<0\end{array}\right.$=$\left\{\begin{array}{l}{x}^{2}+x{,}_{\;}^{\;}x≥0\\{-x}^{2}+x{,}_{\;}x<0\end{array}\right.$,
其图象如下图所示:

由图可得:函数在定义域R上为增函数,
函数图象关于原点对称,故函数的奇函数,
故答案为:增函数,奇函数

点评 本题考查的知识点是分段函数的应用,函数的单调性与奇偶性,数形结合思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|(x+1)(x-2)<0},B={x|0<x<3},则A∪B=(  )
A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.写出命题p:?x∈R,x2+x+1>0的否定:?x0∈R,x02+x0+1≤0,命题p是真命题(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题P函数y=lg(2ax2+2x+1)的定义域为R;命题Q不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立;若P∨Q是真命题,P∧Q是假命题;求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知集合A={x|y=$\sqrt{{x}^{2}-5x-14}$},B={x|m+1≤x≤2m+1}.若A∪B=A,求实数m的取值范围;
(2)若函数y=f(x)的值域是[$\frac{1}{4}$,4],求函数y=f(x)-2$\sqrt{f(x)}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.二项式(x3+$\frac{a}{{x}^{2}}$)5的展开式中的常数项为80,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)={log_2}(1+\frac{1}{x})$.
(1)求使f(x)>1的x的取值范围;
(2)计算f(1)+f(2)+…+f(127)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某商店销售茶壶和茶杯,茶壶每个定价为20元,茶杯每个定价为5元.现该店推出两种优惠办法:
(1)买一个茶壶赠送一个茶杯;
(2)按购买总价的92%付款.
某顾客需购买茶壶4个,茶杯若干个(不少于4个),试建立在两种优惠办法下,付款y(元)与购买茶杯个数x(个)之间的函数关系式,由此能否决定选择哪种优惠办法省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且Sn=2an-2(n=1,2,3…).
(I)求数列{an}的通项公式an
(Ⅱ)设bn=an+n,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案