ÈôÍÖÔ²E1£º
x2
a
2
1
+
y2
b
2
1
=1
ºÍÍÖÔ²E2£º
x2
a
2
2
+
y2
b
2
2
=1
Âú×ã
a2
a1
=
b2
b1
=m(m£¾0)
£¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÏàËÆ£¬mÊÇÏàËƱȣ®
£¨¢ñ£©Çó¹ý£¨2£¬
6
)
ÇÒÓëÍÖÔ²
x2
4
+
y2
2
=1
ÏàËƵÄÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Éè¹ýÔ­µãµÄÒ»ÌõÉäÏßl·Ö±ðÓ루¢ñ£©ÖеÄÁ½ÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÏ߶ÎOBÉÏ£©£®
¢ÙÈôPÊÇÏ߶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÇóPµãµÄ¹ì¼£·½³Ì£»
¢ÚÇó|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
·ÖÎö£º£¨¢ñ£©Éè³öÓëÍÖÔ²
x2
4
+
y2
2
=1
ÏàËƵÄÍÖÔ²µÄ·½³ÌΪ£º
x2
a
2
 
+
y2
b
2
 
=1
£¬½áºÏÌâÄ¿Ìõ¼þ¿ÉÇóµÃa2=16£¬b2=8£»
£¨¢ò£©¢Ù¶Ô¹ýÔ­µãµÄÒ»ÌõÉäÏßlµÄбÂÊ·Ö´æÔÚÓë²»´æÔÚ½øÐÐÌÖÂÛ£¬²»´æÔÚʱ¿ÉÇóµÃµãPµÄ×ø±ê£¬´æÔÚʱÉè³öÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬P£¨x£¬y£©£¬ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
y1=kx1
x
2
1
4
+
y
2
1
2
=1
£¬´Ó¶ø¿ÉµÃ
x
2
1
=
4
1+2k2
y
2
1
=
4k2
1+2k2
£¬ÓÚÊÇÓУº
|OA|=
2
1+k2
1+2k2
£¬Í¬Àí|OB|=
4
1+k2
1+2k2
£¬ÓÖµãPÔÚlÉÏ£¬Ôòk=
y
x
£¬´úÈë¼´¿ÉÇóµÃPµãµÄ¹ì¼£·½³Ì£»
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=4£¬µ±lµÄбÂÊ´æÔÚʱ£¬¿ÉÇóµÃ|OA|•|OB|=4+
4
1+2k2
£¬´Ó¶ø¿ÉÇóµÃ|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
½â´ð£º½â£º£¨¢ñ£©ÉèÓë
x2
4
+
y2
2
=1
ÏàËƵÄÍÖÔ²µÄ·½³Ì
x2
a
2
 
+
y2
b
2
 
=1
£®
ÔòÓÐ
2
a
=
2
b
4
a2
+
6
b2
=1
¡­£¨3·Ö£©
½âµÃa2=16£¬b2=8£®
ËùÇó·½³ÌÊÇ
x2
16
+
y2
8
=1
£®¡­£¨4·Ö£©
£¨¢ò£©  ¢Ùµ±ÉäÏßlµÄбÂʲ»´æÔÚʱA(0£¬¡À
2
)£¬B(0£¬¡À2
2
)
£¬
ÉèµãP×ø±êP£¨0£¬y0£©£¬Ôòy02=4£¬y0=¡À2£®¼´P£¨0£¬¡À2£©£®¡­£¨5·Ö£©
µ±ÉäÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³Ìy=kx£¬P£¨x£¬y£©
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
y1=kx1
x
2
1
4
+
y
2
1
2
=1

µÃ
x
2
1
=
4
1+2k2
y
2
1
=
4k2
1+2k2

¡à|OA|=
2
1+k2
1+2k2
ͬÀí|OB|=
4
1+k2
1+2k2
¡­£¨7·Ö£©
ÓÖµãPÔÚlÉÏ£¬Ôòk=
y
x
£¬ÇÒÓÉx2+y2=
8(1+k2)
1+2k2
=
8(1+
y2
x2
)
1+2
y2
x2
=
8(x2+y2)
x2+2y2
£¬
¼´ËùÇó·½³ÌÊÇ
x2
8
+
y2
4
=1
£®
Ó֡ߣ¨0£¬¡À2£©ÊʺϷ½³Ì£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌÊÇ
x2
8
+
y2
4
=1
£®¡­£¨9·Ö£©
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=
2
•2
2
=4
£¬µ±lµÄбÂÊ´æÔÚʱ£¬|OA|•|OB|=
8(1+b2)
1+2k2
=4+
4
1+2k2
£¬
¡à4£¼|OA|•|OB|¡Ü8£¬¡­£¨11·Ö£©
×ÛÉÏ£¬|OA|•|OB|µÄ×î´óÖµÊÇ8£¬×îСֵÊÇ4£®¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬×ÅÖØ¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ïû²Î·¨ÇóµãµÄ¹ì¼££¬ÄѵãÔÚÓÚÖ±ÏßÓëÍÖÔ²µÄ×ۺϷÖÎöÓëÓ¦Óã¬Ë¼Î¬Éî¿Ì£¬ÔËË㸴ÔÓ£¬ÄѶȴó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ³¤Ö᳤Ϊ2
2
£¬ÀëÐÄÂÊΪe1=
2
2
£¬ÍÖÔ²C2ÓëC1Óй²Í¬µÄ¶ÌÖᣮ
£¨¢ñ£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨¢ò£©ÈôC2ÓëÖ±Ïßl£ºx-y+2=0ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÇóÍÖÔ²µÄÀëÐÄÂÊe2µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²E1·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£¬Ô²E2·½³ÌΪx2+y2=a2£¬¹ýÍÖÔ²µÄ×󶥵ãA×÷бÂÊΪk1Ö±Ïßl1ÓëÍÖÔ²E1ºÍÔ²E2·Ö±ðÏཻÓÚB¡¢C£® 
£¨¢ñ£©Èôk1=1ʱ£¬BÇ¡ºÃΪÏ߶ÎACµÄÖе㣬ÊÔÇóÍÖÔ²E1µÄÀëÐÄÂÊe£»
£¨¢ò£©ÈôÍÖÔ²E1µÄÀëÐÄÂÊe=
1
2
£¬F2ΪÍÖÔ²µÄÓÒ½¹µã£¬µ±|BA|+|BF2|=2aʱ£¬Çók1µÄÖµ£»
£¨¢ó£©ÉèDΪԲE2Éϲ»Í¬ÓÚAµÄÒ»µã£¬Ö±ÏßADµÄбÂÊΪk2£¬µ±
k1
k2
=
b2
a2
ʱ£¬ÊÔÎÊÖ±ÏßBDÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¶¨µã×ø±ê£»Èô²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²E1£º
x2
10
+
2y2
5
=1
 E2£º
x2
a2
+
2y2
b2
=1(a£¾b£¾0)
£®E1ÓëE2ÓÐÏàͬµÄÀëÐÄÂÊ£¬¹ýµãF£¨-
3
£¬0
£©µÄÖ±ÏßlÓëE1£¬E2ÒÀ´Î½»ÓÚA£¬C£¬D£¬BËĵ㣨Èçͼ£©£®µ±Ö±Ïßl¹ýE2µÄÉ϶¥µãʱ£¬Ö±ÏßlµÄÇãб½ÇΪ
¦Ð
6
£®
£¨1£©ÇóÍÖÔ²E2µÄ·½³Ì£»
£¨2£©ÇóÖ¤£º|AC|=|DB|£»
£¨3£©Èô|AC|=1£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxoy£¨OΪ×ø±êÔ­µã£©ÖУ¬ÍÖÔ²E1£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÁ½¸ö½¹µãÔÚÔ²E2£ºx2+y2=a+bÉÏ£¬ÇÒÍÖÔ²µÄÀëÐÄÂÊÊÇ
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²E1ºÍÔ²E2µÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¾­¹ýÔ²E2ÉϵÄÒ»µãP£¨x0£¬y0£©µÄÖ±Ïßl£¬Ê¹lÓëÔ²E2ÏàÇУ¬ÓëÍÖÔ²E1ÓÐÁ½¸ö²»Í¬µÄ½»µãA¡¢B£¬ÇÒ
OA
OB
=3£¿Èô´æÔÚ£¬Çó³öµãPµÄºá×ø±êx0µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ³¤Ö᳤Ϊ2
2
£¬ÀëÐÄÂÊΪe1=
2
2
£¬ÍÖÔ²C2ÓëC1Óй²Í¬µÄ¶ÌÖᣮ
£¨¢ñ£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨¢ò£©ÈôC2ÓëÖ±Ïßl£ºx-y+2=0ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÇóÍÖÔ²µÄÀëÐÄÂÊe2µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸