精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,焦点在坐标轴上,焦距长为2,左准线为

1)求椭圆的方程及其离心率;

2)若过点的直线交椭圆 两点,且为线段的中点,求直线的方程;

3)过椭圆右准线上任一点引圆 的两条切线,切点分别为 .试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

【答案】1 23.

【解析】试题分析:(1)根据条件可得关于a,b,c方程组,解得 ,即得椭圆的方程及其离心率;(2)利用点差法得中点坐标与弦斜率关系式,解得斜率,根据点斜式得直线的方程;(3)先根据两圆:以为直径的圆与圆方程相减得切点弦方程,再根据方程恒等得定点

试题解析:(1)设椭圆方程为,则,所以

又其准线为,所以,则

所以椭圆方程为,其离心率为

(2)设点和点坐标分别为 ,因为点和点都在椭圆上,

所以两式相减得

又点为线段的中点,所以

所以直线的斜率为

所以直线的方程为,即

(3)直线恒过定点. 

因为椭圆的右准线方程为,所以设点坐标为,圆心坐标为

因为直线 是圆的两条切线,所以切点 在以为直径的圆上.

所以该圆方程为

两圆方程相减,得直线的方程

,由

所以直线必过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(﹣x)=f(x),f(x+8)=f(x),且当x∈(0,4]时f(x)= ,关于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016个整数解,则实数a的取值范围是(
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,平行四边形ABCD中,AB=2AD,∠DAB=60°,M是BC的中点.将△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中点,图2所示.

(Ⅰ)求证:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的动点,当 为何值时,二面角P﹣MC﹣B的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下

1)求出表中及图中的值

2)若该校高一学生有800人,试估计该校高一学生参加社区服务的次数在区间内的人数.

【答案】1 2人.

【解析】试题分析:(1)由题意 内的频数是10,频率是0.25知, 所以,则 .(2)高一学生有800人,分组内的频率是,人数为人.

试题解析:

1)由内的频数是10,频率是0.25知, 所以.

因为频数之和为40,所以 .

.

因为是对应分组的频率与组距的商所以.

2)因为该校高一学生有800人,分组内的频率是

所以估计该校高一学生参加社区服务的次数在此区间内的人数为人.

型】解答
束】
18

【题目】已知直线经过抛物线的焦点且与交于两点.

1)设上一动点 到直线的距离为的最小值

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低万元与技术改造投入万元之间满足:①的乘积成正比;②当时, ,并且技术改造投入比率 为常数且

1)求的解析式及其定义域;

2)求的最大值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中是自然对数的底数).

1)若曲线在点处的切线与直线垂直,求实数的值;

2)记函数,其中,若函数内存在两个极值点,求实数的取值范围;

3)若对任意 ,且,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f(x)=x﹣[x],则下列命题中正确的是  

①函数f(x)的最大值为1; ②函数f(x)的最小值为0;

③方程有无数个根; ④函数f(x)是增函数.

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为(-3,3),

满足f(-x)=-f(x),且对任意xy,都有f(x)-f(y)=f(xy),当x<0时,f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判断f(x)的单调性,并证明;

(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.

查看答案和解析>>

同步练习册答案