精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为

(1)求甲队分别以获胜的概率;

(2)设表示决出冠军时比赛的场数,求的分布列及数学期望.

【答案】1

2X的分布列为

X

5

6

7






【解析】

(1)记甲队以获胜的事件分别为A,B,事件说明第五场甲负,第六场甲胜,因此,事件说明第五、六两场甲都负,第七场 甲胜,因此;(2)从题设可知的取舍分别5,6,7,可分别求出相应的概率,得分布列.

(1)设甲队以获胜的事件分别为A,B,

甲队第5,6场获胜的概率均为,第7场获胜的概率为

甲队以获胜的概率分别为

(2)随机变量X的可能取值为5,6,7,

随机变量X的分布列为

X

5

6

7






练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为的菱形,.

(1)证明:平面

(2)若求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取2人,这2人都“认为作业量大”的概率为.

认为作业量大

认为作业量不大

合计

男生

18

女生

17

合计

50

1)请完成上面的列联表;

2)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】14916……这些数可以用图1中的点阵表示,古希腊毕达哥拉斯学派将其称为正方形数,记第个数为.在图2的杨辉三角中,第行是展开式的二项式系数,…,,记杨辉三角的行所有数之和.

1)求的通项公式;

2)当时,比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如下四个命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于,表示回归效果越好;②在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于;④对分类变量,对它们的随机变量的观测值来说,越小,则“有关系”的把握程度越大.其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数单调递增,函数的图像关于点对称,实数满足不等式,则的最小值为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》第八章方程问题八:今有卖牛二、羊五,以买十三豕,有余钱一千。卖牛三、豕三,以买九羊,钱适足.卖羊六、豕八,以买五牛,钱不足六百.问牛、羊、豕各几何?如果卖掉2头牛和5只羊,可买13口猪,还余1000钱;卖掉3头牛和3口猪的钱恰好可买9只羊;而卖掉6只羊和8口猪,去买5头牛,还少600.问牛、羊、猪的价格各是多少”.按照题意,可解出牛______钱、羊______钱、猪______.

查看答案和解析>>

同步练习册答案