精英家教网 > 高中数学 > 题目详情
(2012•许昌一模)设函数f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)(x∈R),则函数f(x)是(  )
分析:利用倍角公式及诱导公式,化简函数的解析式,进而求出其周期,并判断其奇偶性,可得答案.
解答:解:∵函数f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)=-cos2(x+
π
4
)=-cos(2x+
π
2
)=sin2x
∵ω=2,∴函数f(x)的最小正周期T=π
又∵f(-x)=sin(-2x)=-sin2x=-f(x)
故f(x)为奇函数
故函数f(x)是最小正周期为π的奇函数
故选A
点评:本题考查的知识点是三角函数中的恒等变换,三角函数的周期性,三角函数的奇偶性,其中利用倍角公式及诱导公式,化简函数的解析式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌一模)设x,y满足
x-ay≤2
x-y≥-1
2x+y≥4
时,则z=x+y既有最大值也有最小值,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)已知(1-2x)8=a0+a1x+a2x2+…a8x8,则a1+2a2+3a3+…8a8=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)已知四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=∠CBA=90°,面 PAB⊥面ABCD,PA=PB=AB=AD=2,BC=1.
(Ⅰ)求证:PD⊥AC;
(Ⅱ)若点M是棱PD的中点.求二面角M-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)已知函数f(x)=lnx-x+ax2
(I)试确定实数a的取值范围,使得函数f(x)在定义域内是单调函数;
(II)证明:
n
k=2
(
1
k
-ln
1
k
)
n-1
2(n+1)

查看答案和解析>>

同步练习册答案