精英家教网 > 高中数学 > 题目详情
已知函数(其中t为常数且t≠0).
(I)求证:数列为等差数列;
(II)求数列{an}的通项公式;
(III)设,求数列{bn}的前n项和Sn
【答案】分析:(1)由已知中,t2-2tan-1+an-1an=0,n=2,3,4,…,我们易变形为t2-tan-1=tan-1-an-1an,进而得到 -= (为常数),由此得出结论.
(2)由(1)中结论,我们结合等差数列的通项公式,及已知中a1=2t,得到数列{an}的通项公式.
(3)先求出 bn=n•2nan=(n+1)t2n,再利用错位相减法进行数列求和,从而求得结果.
解答:解:(I) 证明:(1)∵t2-2tan-1+an-1an=0,∴(t2-tan-1)-(tan-1-an-1an)=0,即 t(t-an-1)=an-1(t-an).
∵t-an-1≠0,∴=,即==+
-= (为常数),∴数列为等差数列.
(II)由上可得数列为等差数列.公差为,∴=+(n-1)=
∴an =+t.
(3)∵bn=n•2nan=(n+1)t2n
∴sn=t[2×21+3×22+…+(n+1)2n]①.
∴2sn=t[2×22+3×23+…+n 2n+(n+1)2n+1]②.
①-②可得-sn=t[[2×21+22+23+…+2n-(n+1)2n+1]=[2+( 2n+1-2)-(n+1)2n+1]=-n 2n+1
∴sn=n 2n+1
点评:本题考查的知识点是等差数列关系的确定,数列的求和,其中(1)的关键是根据等差数列的定义,判断出 -= (为常数),(2)的关键是熟练掌握等差数列的通项公式,(3)的关键是根据数列{bn}的通项公式确定使用错位相减法进行数列求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①f(
t
2
)=
2
2
;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①数学公式;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①f(
t
2
)=
2
2
;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省乐山一中高三(上)9月月考数学试卷(文科)(解析版) 题型:填空题

已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2012年四川省高考数学压轴卷(理科)(解析版) 题型:解答题

已知定义域为R的函数f(x)对任意实数x,y满足:f(x+y)+f(x-y)=2f(x)f(y),且f(x)不是常函数,常数t>0使f(t)=0,给出下列结论:①;②f(x)是奇函数;③f(x)是周期函数且一个周期为4t;④f(x)在(0,2t)内为单调函数.其中正确命题的序号是   

查看答案和解析>>

同步练习册答案