观察下列事实的不同整数解的个数为4,的不同整数解的个数为8,的不同整数解的个数为12,……,则的不同整数解的个数为( )
A.76 | B.80 | C.86 | D.92 |
科目:高中数学 来源: 题型:单选题
对命题“正三角形的内切圆切于三边的中点”可类比猜想出:正四面体的内切球切于四面都为正三角形的什么位置?( )
A.正三角形的顶点 | B.正三角形的中心 |
C.正三角形各边的中点 | D.无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( ).
A.26 | B.31 | C.32 | D.36 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
学习合情推理后,甲、乙两位同学各举了一个例子,
甲:由“若三角形周长为l,面积为S,则其内切圆半径r=”类比可得“若三棱锥表面积为S,体积为V,则其内切球半径r=”;
乙:由“若直角三角形两直角边长分别为a、b,则其外接圆半径r=”类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为a、b、c,则其外接球半径r=”.这两位同学类比得出的结论( )
A.两人都对 | B.甲错、乙对 |
C.甲对、乙错 | D.两人都错 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明( )
A.n=k+1时命题成立 |
B.n=k+2时命题成立 |
C.n=2k+2时命题成立 |
D.n=2(k+2)时命题成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;
⑥“=”类比得到“=”.
以上的式子中,类比得到的结论正确的个数是( )
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
三段论:“①所有的中国人都坚强不屈;②玉树人是中国人;③玉树人一定坚强不屈”中,其中“大前提”和“小前提”分别是( )
A.①② | B.①③ |
C.②③ | D.②① |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com