精英家教网 > 高中数学 > 题目详情
17.已知直线Ax+y+C=0,其中A,C,4成等比数列,且直线经过抛物线y2=8x的焦点,则A+C=(  )
A.-1B.0C.1D.4

分析 根据A,C,4成等比数列,利用等比数列的性质列出关系式,找出已知抛物线的焦点坐标代入直线解析式得到关系式,联立求出A与C的值,即可确定出A+C的值.

解答 解:∵A,C,4成等比数列,
∴C2=4A①,
∵直线Ax+y+C=0经过抛物线y2=8x的焦点,焦点为(2,0),
∴2A+C=0②,
联立①②,解得:A=1,C=-2或A=C=0(舍去),
则A+C=1-2=-1,
故选:A.

点评 此题考查了抛物线的简单性质,熟练掌握抛物线的简单性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知A={x|x2-2ax-3a2<0},B={x|$\frac{x+1}{x-2}$<0},A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,方程y=ax+$\frac{1}{a}$表示的直线可能是 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF是正三角形,EF∥AB,EF=2,则该多面体的体积为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x2+x+y)4的展开式中,x3y2的系数是12.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在棱长为1的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内(包括边)的动点,且A1F∥平面D1AE,沿A1F运动,将B1点所在的几何体削去,则剩余几何体的体积为(  )
A.$\frac{3}{4}$B.$\frac{7}{8}$C.$\frac{11}{12}$D.$\frac{23}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知过点$P({-2\sqrt{3},-2})$的直线l与圆O:x2+y2=4有公共点,则直线l斜率的取值范围是$[{0,\sqrt{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.A,B,C,D是空间四点,有以下条件:
①$\overrightarrow{OD}$=$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$
②$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{4}$$\overrightarrow{OC}$
③$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{5}$$\overrightarrow{OC}$
④$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{6}$$\overrightarrow{OC}$
能使A,B,C,D四点一定共面的条件是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A,B,C三点不在同一条直线上,O是平面ABC内一定点,P是△ABC内的一动点,若$\overrightarrow{OP}-\overrightarrow{OA}=λ(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC})$,λ∈[0,+∞),则直线AP一定过△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

同步练习册答案