精英家教网 > 高中数学 > 题目详情
18.已知f(n)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*),经计算得f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,则可以归纳出一般结论:当n≥2时,有$f({2^n})>\frac{n+2}{2}$(n∈N*).

分析 由题意f(4)>2,可化为f(22)>$\frac{2+2}{2}$,f(8)>$\frac{5}{2}$,可化为f(23)>$\frac{3+2}{2}$,即可得出结论.

解答 解:由题意f(4)>2,可化为f(22)>$\frac{2+2}{2}$,
f(8)>$\frac{5}{2}$,可化为f(23)>$\frac{3+2}{2}$,

以此类推,可得$f({2^n})>\frac{n+2}{2}$(n∈N*).
故答案为:$f({2^n})>\frac{n+2}{2}$(n∈N*).

点评 本题考查归纳推理,把已知的式子变形找规律是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.己知函数f(x)=xlnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)对?x≥1,f(x)≤m(x2-1)成立,求实数m的最小值;
(3)证明:1n$\root{4}{2n+1}$$<\sum_{i=1}^{n}$$\frac{i}{4{i}^{2}-1}$.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\sqrt{-{x^2}+4x-3}$的定义域为M.
(1)求f(x)的定义域M;
(2)求当x∈M时,求函数g(x)=4x-a•2x+1(a为常数,且a∈R)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是(  )
A.8B.$4\sqrt{5}$C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a=log3650.99、b=1.01365、c=0.99365,则a、b、c的大小关系为(  )
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,a1=3,a6=6,则a16等于(  )
A.6B.12C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在正方体ABCD-A1B1C1D1中,E为A1C1的中点,则异面直线CE与BD所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,程序框图(算法流程图)的输出结果为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个底面是正三角形的三棱柱的正视图如图所示,则体积等于(  )
A.4$\sqrt{3}$B.$\frac{4}{3}$$\sqrt{3}$C.4D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案