分析 (1)当a=0时,f(x)=lg(2x+1).根据真数为正,可得函数的定义域;
(2)当a=2时,f(x)=lg(2x2+2x+1),结合二次函数的图象和性质,可得函数的值域.
解答 解:(1)当a=0时,f(x)=lg(2x+1).
由2x+1>0得:x∈(-$\frac{1}{2}$,+∞),
故当a=0时,f(x)的定义域为(-$\frac{1}{2}$,+∞),
(2)当a=2时,f(x)=lg(2x2+2x+1).
此时2x2+2x+1≥$\frac{1}{2}$,
故f(x)=lg(2x2+2x+1)≥lg$\frac{1}{2}$,
故f(x)的值域为[lg$\frac{1}{2}$,+∞).
点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(-2)-f(6)=0 | B. | f(-2)-f(6)<0 | C. | f(-2)+f(6)=0 | D. | f(-2)-f(6)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,4] | B. | (-∞,-1]∪[4,+∞) | C. | (-3,5) | D. | (-∞,-3)∪[-1,4]∪(5,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com