精英家教网 > 高中数学 > 题目详情
函数的定义域是            .

试题分析:要使该函数有意义,需要,结合余弦函数的图象可以解得的取值范围为,即函数的定义域为.
点评:函数的定义域,必须写成集合或区间的形式.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数的部分图象如图所示,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的奇函数. 当时,,则不等式的解集用区间表示为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于在区间 [ m,n ] 上有意义的两个函数,如果对任意,均有,则称在 [ m,n ] 上是友好的,否则称在 [ m,n ]是不友好的.现有两个函数(a > 0且),给定区间
(1)若在给定区间上都有意义,求a的取值范围;
(2)讨论在给定区间上是否友好.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若函数的最小值为,求的最大值;
(3)若函数的最小值为定义域内的任意两个值,试比较  的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(I)当时,求的单调区间;
(II)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

则不等式的解集为(  )
A.(1,2)∪(3,+∞)B.(,+∞)
C.(1,2)∪(,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于函数,有下列结论:①函数的定义域是(0,+∞);②函数是奇函数;③函数的最小值为-;④当时,函数是增函数;当时,函数是减函数.
其中正确结论的序号是         .(写出所有你认为正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不等式
(1)若对所有的实数不等式恒成立,求的取值范围;
(2)设不等式对于满足的一切的值都成立,求的取值范围。

查看答案和解析>>

同步练习册答案