精英家教网 > 高中数学 > 题目详情
设函数f(x)=msinx+
2
cosx,(m为常数,且m>0),已知函数f(x)的最大值为2.
(I)求函数f(x)的单调递减区间;
(II)已知a,b,c是△ABC的三边,且b2=ac.若,f(B)=
3
,求B的值.
分析:(Ⅰ)由题意函数f(x)=
m2+2
sin(x+∅),
m2+2
=2,求得m=
2
,从而函数f(x)=
2
sinx+
2
cosx=2sin(x+
π
4
).由 2kπ+
π
2
≤x+
π
4
≤2kπ+
2
,k∈z,解得x的范围,
即可得到函数f(x)的单调递减区间.
(Ⅱ)由题意可得 cosB=
a2+c2-2
2ac
=
a2+c2-ac
2ac
1
2
,可得0<B≤
π
3
,再由 f(B)=
3
=2sin(B+
π
4
),求得 B的值.
解答:(Ⅰ)由题意函数f(x)=msinx+
2
cosx=
m2+2
sin(x+∅),又函数的最大值为2,且m>0,
m2+2
=2,∴m=
2

∴函数f(x)=
2
sinx+
2
cosx=2sin(x+
π
4
).
由 2kπ+
π
2
≤x+
π
4
≤2kπ+
2
,k∈z,解得
π
4
≤x≤2kπ+
4
,k∈z.
故函数函数f(x)的单调递减区间是[
π
4
,2kπ+
4
],k∈z.
(Ⅱ)∵已知a,b,c是△ABC的三边,且b2=ac,∴cosB=
a2+c2-2
2ac
=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2

 当且仅当a=c时取等号.
∴1>cosB≥
1
2
,∴0<B≤
π
3
,∴f(B)=
3
=2sin(B+
π
4
),∴B=
π
12
点评:本题主要考查正弦函数的增区间,余弦定理的应用,三角函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Msin(ωx+φ)(其中M>0,ω>0,|φ|<
π
2
)的图象如图所示.
(1)求函数f(x)的表达式;
(2)设α∈(
π
6
,  
3
),  β∈(-
6
,-
π
3
),  f(
α
2
)=
3
5
,  f(
β
2
)=-
4
5
,求cos2(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2013+x,x∈R,若当θ∈[0 , 
π2
)
时,f(msinθ)+f(1-m)>0恒成立,则m的取值范围是
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+x,x∈R.若当0<θ<
π
2
时,不等式f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)已知命题p:夹角为m的单位向量a,b使|a-b|>l,命题q:函数f(x)=msin(mx)的导函数为f′(x),若?xo∈R,f′(xo)≥
4π25
.设符合p∧q为真的实数m的取值的集合为A.
(I)求集合A;
(Ⅱ)若B={x∈R|x2=πa},且B∩A=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设?>0,m>0,若函数f(x)=msin
ωx
2
cos
ωx
2
在区间(-
π
3
π
4
)
上单调递增,则ω的取值范围是(  )

查看答案和解析>>

同步练习册答案