【题目】已知函数.
(1)求函数的的单调区间;
(2)若恒成立,试确定实数的取值范围;
(3)证明:.
【答案】(1)当时,在上是增函数,当时,在上是增函数,在上是减函数;(2);(3)证明见解析.
【解析】
试题分析:(1)函数的定义域为,分和两种情况分类讨论,即可求解函数的单调性;(2)由(1)知时,不成立,故,又由(1)知的最大值为,只需即可,即可求解;(3)由(2)知,当时,有在恒成立,且在上是减函数,进而,则,即,即可证明结论.
试题解析:(1) 函数的定义域为,
当时,在上是增函数,
当时,若时,有,
若时,有,则在上是增函数,在上是减函数.
(2)由(1)知时,在上是增函数,而不成立,故,又由(1)知的最大值为,要使恒成立,则即可,
即,得.
(3)由(2)知,当时,有在恒成立,且在上是减函数,
,即,在上恒成立,令,则,
即,从而
得证.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数);在以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(I)求曲线的极坐标方程和曲线的直角坐标方程;
(II)若射线与曲线,的交点分别为(异于原点),当斜率时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点与短轴的两个端点是正三角形的三个项点,点在椭圆上.
(1)求椭圆的方程;
(2)设不过原点且斜率为的直线与椭圆交于不同的两点,线段的中点为,直线与椭圆交于,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。
.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一三角形地块的一角开辟为水果园种植桃树,已知角为,的长度均大于米,现在边界处建围墙,在处围竹篱笆.
(1)若围墙总 长度为米,如何围可使得三角形地块的面积最大?
(2)已知段围墙高米,段围墙高米,造价均为每平方米元.若围围墙用了元,问如何围可使竹篱笆用料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com