精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两同学在复习数列时发现原来曾经做过的一道数列问题因纸张被破坏,导致一个条件看不清,具体如下:等比数列的前n项和为,已知_____

1)判断的关系;

2)若,设,记的前n项和为,证明:.

甲同学记得缺少的条件是首项a1的值,乙同学记得缺少的条件是公比q的值,并且他俩都记得第(1)问的答案是成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题.

【答案】12)见解析

【解析】

1)可补充公比q的值,由等比数列的通项公式和等差数列的中项性质,计算可得所求结论;

2)由等比数列的通项公式求得,再由数列的错位相减法求和,结合等比数列的求和公式,不等式的性质,即可得证.

1)由题意可得

可得,即成等差数列;

2)证明:由,可得,解得

上面两式相减可得

化简可得

,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】刍甍,中国古代算术中的一种几何图形,《九章算术》中记载刍甍者,下有褒有广,而上有褒无广刍,草也;甍,屋盖也.翻译为底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍甍字面意思为茅草屋顶如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,若用茅草搭建它(无底面,不考虑厚度),则需要覆盖的面积至少为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥ABCD中,点EBD上,EAEBECEDBDCD,△ACD为正三角形,点MN分别在AECD上运动(不含端点),且AMCN,则当四面体CEMN的体积取得最大值时,三棱锥ABCD的外接球的表面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为2的等边中,分别为边的中点,将AED沿折起,使得 ,得到如图2的四棱锥A-BCDE,连结,且交于点

1)求证:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:①“”是“”的充分不必要条件;②命题“”的否定是“”;③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件为“4个人去的景点不相同”,事件为“小赵独自去一个景点”,则;④设,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是6587.(注:若,则)其中正确说法的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:

20以下

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为椭圆的右焦点,C的准线与E交于PQ两点,且

1)求E的方程;

2)过E的左顶点A作直线lE于另一点B,且BOO为坐标原点)的延长线交E于点M,若直线AM的斜率为1,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

得到正确结论是( )

A. 有99%以上的把握认为“学生性别与中学生追星无关”

B. 有99%以上的把握认为“学生性别与中学生追星有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”

D. 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,所在平面互相垂直,且分别为的中点.

(1)求证:

(2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案