精英家教网 > 高中数学 > 题目详情
14.已知直线l1:(a+2)x+3y=5与直线l2:(a-1)x+2y=6平行,则a等于(  )
A.-1B.7C.$\frac{7}{5}$D.2

分析 由-$\frac{a+2}{3}$=-$\frac{a-1}{2}$,解得a,并且验证即可得出.

解答 解:由-$\frac{a+2}{3}$=-$\frac{a-1}{2}$,解得a=7,
经过验证两条直线平行.
故选:B.

点评 本题考查了平行的充要条件,考查了分类讨论方法、推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合M={x||x|≤2},N={x|x2+2x-3≤0},则M∩N=(  )
A.{x|-2≤x≤1}B.{x|1≤x<2}C.{x|-1≤x≤2}D.{x|-3≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知扇环如图所示,∠AOB=120°,OA=2,OA′=$\frac{1}{2}$,P是扇环边界上一动点,且满足$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则2x+y的取值范围为[$\frac{1}{4}$,$\frac{2\sqrt{21}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的焦距为8,则m的值为(  )
A.3或$\sqrt{41}$B.3C.$\sqrt{41}$D.±3或$±\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a∈R,设命题p:指数函数y=ax(a>0且a≠1)在R上单调递增;命题q:函数y=ln(ax2-ax+1)的定义域为R,若“p且q”为假,“p或q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数$f(x)=sin(ωx+\frac{π}{6})(ω>0)$图象的两条相邻的对称轴之间的距离为$\frac{π}{2}$,且该函数图象关于点(x0,0)成中心对称,${x_0}∈[0,\frac{π}{2}]$,则x0=(  )
A.$\frac{π}{12}$B.$\frac{5π}{12}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数y=xsinx,则y'=(  )
A.cosxB.-cosxC.sinx+xcosxD.sinx-xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若三棱锥的三条侧棱两两垂直,侧棱长分别为1,$\sqrt{3}$,2,且它的四个顶点在同一球面上,则此球的体积为(  )
A.$\frac{{2\sqrt{2}}}{3}π$B.$3\sqrt{3}π$C.$\frac{{8\sqrt{2}}}{3}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知:tan(α+$\frac{π}{4}$)=-$\frac{2}{3}$,($\frac{π}{2}$<α<π).
(1)求tanα的值;
(2)求$\frac{sin2α-2co{s}^{2}α}{sin(α-\frac{π}{4})}$的值.

查看答案和解析>>

同步练习册答案