精英家教网 > 高中数学 > 题目详情
1.已知数列{an}中,a1=3,an=${3}^{{a}_{n-1}}$(n≥2),求a2001的末位数字是多少?

分析 通过计算出前几项的值确定规律,进而可得结论.

解答 解:依题意a2=33=27,a3=327=19683,
∴该数列通项的末位数是以2为周期的周期数列,
∵2001=1000×2+1,
∴a2001的末位数字与首项的末位数字相同,
即a2001的末位数字为3.

点评 本题考查数列的递推式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否能够在犯错概率不超过0,05的前提下认为“体育迷”与性别有关?
非体育迷体育迷合计
1055
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.i是虚数单位,复数$\frac{3+i}{1-i}$=(  )
A.2-iB.2+4iC.-1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列四个命题:
①y=2+x3sin(x+$\frac{5π}{2}$)在区间[-10π,10π]上的最大值与最小值之和是6;
②函数f(x)=$\frac{x-1}{2x+1}$(x≠-$\frac{1}{2}$)的对称中心是(-$\frac{1}{2}$,-$\frac{1}{2}$);
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
④已知函数y=2sin(ωx+φ)(ω>0,0<φ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω=2,φ=$\frac{π}{2}$
所有正确命题的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若a>0,b>0,求证:abba≤(ab)${\;}^{\frac{a+b}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线y=3被圆x2+y2-2mx-4y+4m-4=0截得的最短弦长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y2=2px(p>0),直线AB经过抛物线的焦点为F,则∠AOB的可能值为(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当$x∈[{0,\frac{π}{2}}]$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在三棱锥A-BCD中,底面BCD是正三角形,AC=BD=2,AB=AD=$\sqrt{2}$,O为BC的中点.
(1)求证:AO⊥平面BCD;
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

同步练习册答案