精英家教网 > 高中数学 > 题目详情

【题目】已知点的序列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,……,An是线段An-2An-1的中点,……

(1)写出xnxn-1,xn-2之间的关系式(n≥3);

(2)an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明.

【答案】(1);(2)见解析

【解析】分析:(1)根据题意,An是线段An﹣2An﹣1的中点,可得xnxn﹣1、xn﹣2之间的关系式,

(2)由题意知a1=a,a2=﹣a,a3=a,由此推测:an=(﹣n﹣1a(n∈N*)再进行证明.

详解:(1)当n≥3时,xn

(2)a1=x2-x1=a,

a2=x3-x2

=

a3=x4-x3

=

由此推测数列{an}的通项公式为an∈N*).

用数学归纳法证明:

当n=1时,a1=x2-x1=a.

假设当n=k(k∈N*,且k≥1)时,猜测成立,

akn=k+1时,

ak+1=xk+2-xk+1=

=

.

根据可知,对任意n∈N*,猜测an∈N*)成立,即数列{an}的通项公式为an∈N*).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.
(Ⅰ)求证:BE//平面ADE ;
(Ⅱ)求平面AEF与平面BEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n是两条不同直线,是两个不同平面,则下列命题正确的是
A.若垂直于同一平面,则平行
B.若m,n平行于同一平面,则m与n平行
C.若不平行,则在内不存在与平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1 过点P且离心率为

(1)求C1的方程;

(2)若椭圆C2过点P且与C1有相同的焦点,直线lC2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/kWh,年用电量为kWh.本年度计划将电价降低到055/ kWh075/ kWh之间,而用户期望电价为040/ kWh.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为),该地区电力的成本价为030/ kWh

1)写出本年度电价下调后,电力部门的收益与实际电价之间的函数关系式;

2)设=,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价-成本价))

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上的一点与两个焦点构成的三角形周长为.

(1)求椭圆的方程;

(2)已知直线与椭圆相交于两点.

①若线段中点的横坐标为,求的值;

②在轴上是否存在点,使为定值?若是,求点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①命题a=0,ab=0”的否命题是a=0,ab≠0”;

②已知命题p:xR,x2+6x+11<0,p:xR,x2+6x+110;

③若命题p与命题pq都是真命题,则命题q一定是真命题;

④命题0<a<1,loga(a+1)<log

其中正确结论的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=logax(a>0a≠1)的图象过点(4,2),

(1)a的值.

(2)g(x)=f(1-x)+f(1+x),g(x)的解析式及定义域.

(3)(2)的条件下,g(x)的单调减区间.

查看答案和解析>>

同步练习册答案