精英家教网 > 高中数学 > 题目详情

【题目】给出以下三个命题:

①若,则

②在中,若,则

③在一元二次方程中,若,则方程有实数根.

其中原命题、逆命题、否命题、逆否命题均为真命题的是________

【答案】

【解析】

根据题意,分别写出每个命题的逆命题、否命题和逆否命题,再判断它们的真假.

解:对于①,当时,,则原命题是假命题,其逆否命题也是假命题;其逆命题是:若,则,是真命题,则其否命题也是真命题;

对于②,若,由正弦定理得,则,则原命题是真命题,其逆否命题也是真命题;逆命题是:在中,若,则,是真命题,则其否命题也是真命题;

对于③,当时,方程没有实数根,则原命题是假命题,则其逆否命题也是假命题;逆命题是:在一元二次方程中,若方程有实数根,则,是假命题,则其否命题也是假命题;

故答案为:②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:为参数点的极坐标为,曲线C的极坐标方程为

试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;

设直线l与曲线C相交于两点AB,点MAB的中点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是椭圆上一点,MN分别是两圆(x+4)2y2=1(x-4)2y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为征求个人所得税法修改建议,某机构对当地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500))

(1)求居民月收入在的频率;

(2)根据频率分布直方图估算样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三角形 的边长为3, 分别是边上的点,满足 (如图1).将折起到的位置,使平面平面,连接(如图2).

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.

(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;

(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且在上单调递减,则的解集为  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A. ”是“”成立的充分不必要条件

B. 命题,则

C. 为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40

D. 已知回归直线的斜率的估计值为1.23,样本点的中心为,则回归直线方程为.

查看答案和解析>>

同步练习册答案