【题目】如图,在四棱锥中,底面是正方形,且,平面 平面,,点为线段的中点,点是线段上的一个动点.
(Ⅰ)求证:平面 平面;
(Ⅱ)设二面角的平面角为,试判断在线段上是否存在这样的点,使得,若存在,求出的值;若不存在,请说明理由.
【答案】(Ⅰ)见证明;(Ⅱ)
【解析】
(Ⅰ)根据面面垂直的判定定理即可证明结论成立;
(Ⅱ)先证明,,两两垂直,再以为原点,以,,所在直线分别为轴,建立空间直角坐标系,设,用表示出平面的法向量,进而表示出,由,即可得出结果.
解:(Ⅰ) 四边形是正方形,∴.
∵平面 平面平面平面,∴平面.
∵平面,∴.
∵,点为线段的中点,∴.
又∵,∴平面.
又∵平面,∴平面 平面.
(Ⅱ)由(Ⅰ)知平面,∵,∴平面.
在平面内过作交于点,
∴,故,,两两垂直,以为原点,
以,,所在直线分别为轴,建立如图所示空间直角坐标系.
因为,,∴.
∵平面, 则,,
又为的中点,,
假设在线段上存在这样的点,使得,设,,,
设平面的法向量为, 则
∴,令,则,则
平面,平面的一个法向量,,则
∴.
,解得,∴
科目:高中数学 来源: 题型:
【题目】甲乙两名射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,求:
(1)2人都射中目标的概率;
(2)2人中恰有1人射中目标的概率;
(3)2人至少有1人射中目标的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)当a>1时,求使f(x)>0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.某班位同学从文学、经济和科技三类不同的图书中任选一类,不同的结果共有种;
B.甲乙两人独立地解题,已知各人能解出的概率分别是,则题被解出的概率是;
C.某校名教师的职称分布情况如下:高级占比,中级占比,初级占比,现从中抽取名教师做样本,若采用分层抽样方法,则高级教师应抽取人;
D.两位男生和两位女生随机排成一列,则两位女生不相邻的概率是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com