精英家教网 > 高中数学 > 题目详情

【题目】已知下列命题:

①在线性回归模型中,相关指数越接近于1,表示回归效果越好;

②两个变量相关性越强,则相关系数r就越接近于1;

③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;

④两个模型中残差平方和越小的模型拟合的效果越好.

⑤回归直线恒过样本点的中心,且至少过一个样本点;

⑥若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________

【答案】①③④⑦

【解析】分析:根据线性回归分析的概念进行分析即可.

详解:在线性回归模型中,相关指数越接近于1,表示回归效果越好,①正确;两个变量相关性越强,则相关系数r的绝对值就越接近于1,②错误;③正确;两个模型中残差平方和越小的模型拟合的效果越好,④正确;回归直线恒过样本点的中心,这一定过样本点,⑤错误;若的观测值满足≥6.635,我们有99%的把握认为吸烟与患肺病有关系,并不能说在100个吸烟的人中必有99人患有肺病,⑥错误;从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误,⑦正确.

故答案为①③④⑦.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是(

A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yAsin(ωxφ)(A>0,ω>0,)的图象过点,图象与P点最近的一个最高点坐标为.

(1)求函数解析式;

(2)求函数的最小值,并写出相应的x值的集合;

(3)当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对该班22名学生进行了作业量的调查,在喜欢玩电脑游戏的12人中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.

(1)根据以上数据建立一个列联表.

(2)对于该班学生,能否在犯错误概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关系?

下面临界值表仅供参考:

0.05

0.01

0.001

3.841

6.635

10.828

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是从上下底面处在水平状态下的棱长为a的正方体ABCD﹣A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:

患心肺疾病

不患心肺疾病

合计

A

合计

B

(1)根据已知条件求出上面的列联表中的A和B;用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)为了研究心肺疾病是否与性别有关,请计算出统计量,并说明是否有的把握认为心肺疾病与性别有关?

下面的临界值表供参考:

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线,过点作直线与双曲线交于两点,使点是线段的中点,那么直线的方程为

A. B. C. D. 不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若对任意x∈R,f(x)≥0恒成立,求a的范围;
(3)若方程f(x)=x有三个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)设,求的值;

(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.

查看答案和解析>>

同步练习册答案