【题目】对于各数不相等的正整数组(i1, i2, …, in),(n是不小于2的正整数),如果在p>q时有,则称ip和iq是该数组的一个“好序”,一个数组中“好序”的个数称为此数组的“好序数”,例如,数组(1, 3, 4, 2)中有好序“1, 3”,“1, 4”,“1, 2”,“3, 4”,其“好序数”等于4. 若各数互不相等的正整数组(a1, a2, a3, a4, a5, a6, a7)的“好序数”等于3,则(a7,a6, a5, a4, a3, a2, a1)的“好序数”是______.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为 ,部分对应值如下表,的导函数的图象如图所示.
下列关于的命题:
①函数的极大值点为;
②函数在上是减函数;
③如果当时,的最大值是,那么的最大值为;
④当时,函数有个零点;
⑤函数的零点个数可能为、、、、个.
其中正确命题的个数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)设点,直线与圆相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)
(1)三名女生不能相邻,有多少种不同的站法?
(2)四名男生相邻有多少种不同的排法?
(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?
(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花元购买了一台新型联合收割机,每年用于收割可以收入万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用(元)与使用年数的关系为:,已知第二年付费元,第五年付费元.
(1)试求出该农机户用于维修保养的费用(元)与使用年数的函数关系;
(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经营一批进价为30元/件的商品,在市场试销中发现,此商品的销售单价x(单位:元)与日销售量y(单位:件)之间有如下表所示的关系.
x | … | 30 | 40 | 45 | 50 | … |
y | … | 60 | 30 | 15 | 0 | … |
(1)根据表中提供的数据描出实数对的对应点,根据画出的点猜想y与x之间的函数关系,并写出一个函数解析式;
(2)设经营此商品的日销售利润为P(单位:元),根据上述关系,写出P关于x的函数解析式,并求销售单价为多少元时,才能获得最大日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对于定义在上的函数,其图象是连续不断的,且存在常数使得对任意实数都成立,则称是一个“特征函数”.下列结论中正确的个数为( )
①是常数函数中唯一的“特征函数”;
②不是“特征函数”;
③“特征函数”至少有一个零点;
④是一个“特征函数”.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com