精英家教网 > 高中数学 > 题目详情
15.下列选项中是函数f(x)=sinx-$\sqrt{3}$cosx的零点的是(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{7π}{6}$D.$\frac{4π}{3}$

分析 由条件利用两角差的正弦公式化简函数的解析式,再利用函数的零点的定义求得函数的零点.

解答 解:函数f(x)=sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$),令f(x)=0,求得sin(x-$\frac{π}{3}$)=0,
经过检验,只有D满足条件,
故选:D.

点评 本题主要考查两角差的正弦公式,函数的零点的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且AB=AC=$\frac{1}{2}$PA=1,点E是PD的中点.
(1)求二面角E-AC-D的余弦值;
(2)求EC与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{\begin{array}{l}x+2\;(x≤-1)\\{x^2}(x>-1)\end{array}\right.$,若f(a)=3,则a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=log2x,若在[1,8]上任取一个实数x0,则不等式1≤f(x0)≤2成立的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{7}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,既是奇函数又是增函数的为(  )
A.y=-x2B.$y=\frac{-1}{x}$C.$y=x+\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3x2+ax+2,且f(x)在x=-1处取极大值.
(1)求实数a的值;
(2)证明:当k<1时,曲线y=f(x)+10x与直线y=kx-2只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知一个长方体共一顶点的三个面的面积分别是$\sqrt{2}$、$\sqrt{3}$、$\sqrt{6}$,这个长方体的外接球的表面积是6π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点M是边长为2的正方形ABCD的内切圆内(含边界)一动点,则$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范围是(  )
A.[-1,0]B.[-1,2]C.[-1,3]D.[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线2x+y-3=0的倾斜角为θ,则$\frac{sinθ+cosθ}{sinθ-cosθ}$的值是(  )
A.-3B.-2C.$\frac{1}{3}$D.3

查看答案和解析>>

同步练习册答案