精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)证明:f(x)≥5;

(2)若f(1)<6成立,求实数a的取值范围。

【答案】(1)见解析(2)(1,4)

【解析】试题分析:

(1)由题意结合绝对值不等式的性质和均值不等式的性质即可证得题中的结论;

(2)由题意得到关于实数a的不等式,然后求解绝对值不等式可得实数a的取值范围是(1,4.

试题解析:

fx=x+a+1+x-丨(x+a+1-x-)丨=a+1+

a0fxa+1+≥2+1=5

II)由f1)<6得:丨a+2+1-丨<6

a0∴丨1-丨<4-a 4-a

①当a≥4时,不等式4-a无解;

②当a4时,不等式,即1a1,所以1a4

综上,实数a的取值范围是(1,4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数,当时,

则函数的所有零点之和为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点.若曲线上存在两点,使为正三角形,则称型曲线.给定下列三条曲线:

其中型曲线的个数是

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PAC⊥平面ABC都是正三角形, EF分别是ACBC的中点,且PDABD.

(Ⅰ)证明:直线⊥平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PAC⊥平面ABC都是正三角形, EF分别是ACBC的中点,且PDABD.

(Ⅰ)证明:直线⊥平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设

(1)求灯柱AB的高h(用表示);

(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式为,其中.

(1)试写出一组的值,使得数列中的各项均为正数.

(2),数列满足,且对任意的(),均有,写出所有满足条件的的值.

(3),数列满足,其前项和为,且使()有且仅有组,中有至少个连续项的值相等,其它项的值均不相等,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式为 an=nk1)(nk2),其中k1k2Z

1)试写出一组k1k2Z的值,使得数列{an}中的各项均为正数;

2)若k1=1k2N*,数列{bn}满足bn=,且对任意mN*m≠3),均有b3bm,写出所有满足条件的k2的值;

3)若0k1k2,数列{cn}满足cn=an+|an|,其前n项和为Sn,且使ci=cj≠0ijN*ij)的ij有且仅有4组,S1S2Sn中至少3个连续项的值相等,其他项的值均不相等,求k1k2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,,,,,点DE分别是的中点,求:

(1)该直三棱柱的侧面积;

(2)异面直线所成的角的大小(用反三角函数值表示)

查看答案和解析>>

同步练习册答案