精英家教网 > 高中数学 > 题目详情

(本小题12分)已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;

(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

 

【答案】

(1) A={a|-1≤a≤1} (2) {m|m≥2,或m≤-2}

【解析】

试题分析:解:(Ⅰ)f(x)=4+2 ∵f(x)在[-1,1]上是增函数,

f(x)≥0对x∈[-1,1]恒成立,

x2ax-2≤0对x∈[-1,1]恒成立.       ①

(x)=x2ax-2,

方法一:

          (1)=1-a-2≤0,

①                              -1≤a≤1,

(-1)=1+a-2≤0.

∵对x∈[-1,1],只有当a=1时,f(-1)=0以及当a=-1时,f(1)=0

∴A={a|-1≤a≤1}.

方法二:

(Ⅱ)由

∵△=a2+8>0

x1x2是方程x2ax-2=0的两非零实根,

从而|x1x2|==.

∵-1≤a≤1,∴|x1-x2|=≤3.

要使不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立,

当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,

即m2+tm-2≥0对任意t∈[-1,1]恒成立.       ②

g(t)=m2+tm-2=mt+(m2-2),

方法一:

②g(-1)=m2-m-2≥0,

g(1)=m2+m-2≥0,

m≥2或m≤-2.

所以,存在实数m,使不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.

方法二:

当m=0时,②显然不成立;

当m≠0时,

 m≥2或m≤-2.

所以,存在实数m,使不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.

考点:函数单调性和函数与方程

点评:解决该试题的关键是能利用导数的符号判定函数单调性,同时能结合方程的思想来求解参数的范围,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题12分)已知,直线与函数的k*s#5^u图象都相切,且与函数的k*s#5^u图象的k*s#5^u切点的k*s#5^u横坐标为.

(Ⅰ)求直线的k*s#5^u方程及的k*s#5^u值;

(Ⅱ)若(其中的k*s#5^u导函数),求函数的k*s#5^u最大值;

(Ⅲ)当时,求证:.

查看答案和解析>>

科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题12分)已知等比数列中,
(1)求数列的通项公式;
(2)设等差数列中,,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2011云南省潞西市高二上学期期末考试数学试卷 题型:解答题

(本小题12分)

已知顶点在原点,焦点在轴上的抛物线与直线交于P、Q两点,|PQ|=,求抛物线的方程

 

查看答案和解析>>

科目:高中数学 来源:2010年浙江省杭州市七校高二上学期期中考试数学文卷 题型:解答题

(本小题12分)

已知圆C:

(1)若直线且与圆C相切,求直线的方程.

(2)是否存在斜率为1直线,使直线被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求

    出直线的方程;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省兖州市高二下学期期末考试数学(文) 题型:解答题

(本小题12分)已知函数

(1)       求这个函数的导数;

(2)       求这个函数的图像在点处的切线方程。

 

查看答案和解析>>

同步练习册答案