精英家教网 > 高中数学 > 题目详情

【题目】给出下列说法:

1)命题都是奇数,则是偶数的否命题是都不是奇数,则不是偶数

2)命题如果,那么是真命题;

3的必要不充分条件.

那么其中正确的说法有( )

A.0B.1C.2D.3

【答案】C

【解析】

利用否命题的形式判断(1)的正误;集合关系判断(2)的正误;充要条件判断(3)的正误.

对于(1)命题都是奇数,则是偶数的否命题

都不是奇数,则不是偶数;不满足否命题的

形式,应改为不都是奇数,则不是偶数,所以(1)错误;

对于(2)命题如果,那么是真命题;

满足集合的交集与并集关系,正确;

对于(3)的必要不充分条件,

根据逆否命题的等价性可知,可转化为“”与

”的条件关系,

.,比如,,

但此时不成立,

成立的必要不充分条件,即(3)正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)g(x)(a>0,且a≠1).

(1)求函数φ(x)f(x)g(x)的定义域;

(2)试确定不等式f(x)≤g(x)x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:

总计

读营养说明

不读营养说明

总计

附:

(1)由以上列联表判断,能否在犯错误的概率不超过的前提下认为性别和是否看营养说明有关系呢?

(2)从被询问的名不读营养说明的大学生中随机选取名学生,求抽到女生人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下面结论正确的是( )

A. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

D. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐

个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:

(1)计算值;

(2)以此样本的频率作为概率,求

①在本次达标测试中,“喵儿”得分等于的概率;

②“喵儿”在本次达标测试中可能得分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设,若对,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的极小值为.

(1)求的单调区间;

(2)证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值和最小值.

1)求的值

2)若不等式上有解,求实数的取值范围;

3)若有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案