精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=2sin(2x-$\frac{π}{3}$)-1在区间[a,b](a,b∈R,且a<b)上至少含有10个零点,在所有满足条件的[a,b]中,b-a的最小值为$\frac{13π}{3}$.

分析 根据函数零点的条件,求出相邻两个零点的间隔,进行求解即可.

解答 解:函数f(x)=2sin(2x-$\frac{π}{3}$)-1,
令f(x)=0,即2sin(2x-$\frac{π}{3}$)-1,
sin(2x-$\frac{π}{3}$)=$\frac{1}{2}$,
解得:x=$\frac{π}{4}+kπ$或x=$\frac{7π}{12}+kπ$,(k∈Z).
故相邻的零点之间的间隔依次为$\frac{π}{3}$,$\frac{2π}{3}$.
y=f(x)在[a,b]上至少含有10个零点,等价于b-a的最小值为4×$\frac{2π}{3}$+5×$\frac{π}{3}$=$\frac{13π}{3}$.
故答案为:$\frac{13π}{3}$.

点评 本题主要考查三角函数的图象和性质,利用三角函数的对称性和函数零点的关系是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m=(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
B.“x=1”是“x2-3x+2=0”的充分必要条件.
C.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”是真命题
D.若¬(p∧q)为真命题,则p、q至少有一个为假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算10lg3+log525=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.平面向量$\overrightarrow{OA}$⊥$\overrightarrow{AB}$,|$\overrightarrow{OA}$|=2,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}$sinxcosx+sin2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期及其对称轴方程;
(2)设函数g(x)=f($\frac{ωx+φ}{2}$+$\frac{π}{12}$),其中常数ω>0,|φ|<$\frac{π}{2}$.
(i)当ω=4,φ=$\frac{π}{6}$时,函数y=g(x)-4λf(x)在[$\frac{π}{12}$,$\frac{π}{3}$]上的最大值为$\frac{3}{2}$,求λ的值;
(ii)若函数g(x)的一个单调减区间内有一个零点-$\frac{2π}{3}$,且其图象过点A($\frac{7π}{3}$,1),记函数g(x)的最小正周期为T,试求T取最大值时函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数既是奇函数又是偶函数的是(  )
A.$f(x)=x+\frac{1}{x}$B.$f(x)=\frac{1}{x^2}$
C.$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$D.$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在长方体ABCD-A1B1C1B1中,AA1=2AB=2AD=4,点E在CC1上且C1E=3EC.利用空间向量解决下列问题:
(1)证明:A1C⊥平面BED;
(2)求锐二面角A1-DE-B 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α是第三象限角,sinα=$-\frac{3}{5}$,求$\frac{tan(2π-α)cos(\frac{3π}{2}-α)cos(6π-α)}{sin(α+\frac{3π}{2})cos(α+\frac{3π}{2})}$的值.

查看答案和解析>>

同步练习册答案