精英家教网 > 高中数学 > 题目详情

【题目】设等差数列{an}的前n项和为Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设数列{bn}的前n项和为Tn , 且 (λ为常数).令cn=b2n , (n∈N*),求数列{cn}的前n项和Rn

【答案】解:(Ⅰ)设等差数列{an}的首项为a1,公差为d.

由S4=4S2,a2n=2an+1.得

解得 a1=1,d=2.

因此 an=2n﹣1,n∈N*

(II)由(I)可得 =

当n≥2时,bn=Tn﹣Tn1= =

= ,n∈N*

∴Rn=0+ …=

= + +…+

两式相减得 = =

∴Rn=

∴Rn=

∴数列{cn}的前n项和


【解析】(Ⅰ)设等差数列{an}的首项为a1,公差为d.由于S4=4S2,a2n=2an+1.利用等差数列的通项公式和前n项和公式可得

解出即可.(II))由(I)可得Tn.当n≥2时,bn=Tn﹣Tn1.可得cn=b2n,n∈N*.再利用“错位相减法”即可得出Rn

【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足: + +…+ = (n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=anan+1 , Sn为数列{bn}的前n项和,对于任意的正整数n,Sn>2λ﹣ 恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1Cl中,M,N分别为CC1 , A1B1的中点.
(I)证明:直线MN∥平面CAB1
(II)BA=BC=BB1 , CA=CB1 , CA⊥CB1 , ∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ)+2sin2x(|φ|< )的图象过点( ).
(1)求函数f(x)在[0, ]的最小值;
(2)设角C为锐角,△ABC的内角A、B、C的对边长分别为a、b、c,若x=C是曲线y=f(x)的一条对称轴,且△ABC的面积为2 ,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义“正对数”:ln+x= ,现有四个命题: ①若a>0,b>0,则ln+(ab)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ln+b
③若a>0,b>0,则 b
④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
其中的真命题有: . (写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(Ⅰ)讨论函数f(x)= ex的单调性,并证明当x>0时,(x﹣2)ex+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)= (x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,设圆的方程为(x+2 2+y2=48,F1是圆心,F2(2 ,0)是圆内一点,E为圆周上任一点,线EF2的垂直平分线EF1的连线交于P点,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l(与x轴不重合)与曲线C交于A、B两点,与x轴交于点M.
(i)是否存在定点M,使得 + 为定值,若存在,求出点M坐标及定值;若不存在,请说明理由;
(ii)在满足(i)的条件下,连接并延长AO交曲线C于点Q,试求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,中奖可以获得2分;方案乙的中奖率为 ,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

同步练习册答案