精英家教网 > 高中数学 > 题目详情

【题目】为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系分别如图①、②所示.

(1)分别求出通话费y1y2与通话时间x之间的函数关系式;

(2)请帮助用户计算,在一个月内使用哪种卡便宜?

【答案】(1)y1x+29,y2x;(2)见解析.

【解析】

(1)由图可知,与通话时间成一次函数,与通话时间成正比例函数,设出函数解析式,代入点的坐标得答案;
(2)当两种卡的收费相等时,可求出值,当通话时间小于此值,便民卡便宜,当通话时间大于此值,如意卡便宜.

(1)由图象可设y1k1x+29,y2k2x,把点B(30,35),C(30,15)分别代入y1y2k1k2.

y1x+29,y2x.

(2)令y1y2,即x+29=x,则x=96.

x=96时,y1y2,两种卡收费一致;

x<96时,y1>y2,即使用“便民卡”便宜;

x>96时,y1<y2,即使用“如意卡”便宜.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)求证:恒成立;

2)试求的单调区间;

3)若,且,其中,求证:恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某技校开展技能大赛,甲、乙两班各选取5名学生加工某种零件,在4个小时内每名学生加工的合格零件数的统计数据的茎叶图如图所示,已知甲班学生在4个小时内加工的合格零件数的平均数为21,乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数.

(1)求的值;

(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差,并由此比较两班学生的加工水平的稳定性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的图象与直线没有交点,求的取值范围;

2)设,若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线与椭圆在第一线象限的交点为

1)求曲线的方程;

2)在抛物线上任取一点,在点处作抛物线的切线,若椭圆上存在两点关于直线对称,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法正确的有( )

①函数的定义域和值域确定后,函数的对应关系也就确定了;

f(x)=是函数;

③函数y2x(xN)的图象是一条直线;

f(x)=是同一函数.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

(1)若=10,求yx的函数解析式;

(2)若要求“维修次数不大于的频率不小于0.8,求n的最小值;

(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质.

1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合,若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数的值.

查看答案和解析>>

同步练习册答案