精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为对角线B1D上的一点,M,N为对角线AC上的两个动点,且线段MN的长度为1.
⑴当N为对角线AC的中点且DE= 时,则三棱锥E﹣DMN的体积是
⑵当三棱锥E﹣DMN的体积为 时,则DE=

【答案】
【解析】解:(1)∵底面ABCD是边长为2的正方形,N是AC的中点,

∴AC⊥BD,DN=

∵BB1⊥平面ABCD,AC平面ABCD,

∴AC⊥BB1,又BB1∩BD=B,

∴AC⊥平面BB1D,

故当N为AC的中点时,有MN⊥平面DEN,

又DB1=2 ,BB1=2,∴sin∠BDB1= =

∴VE﹣DMN=VM﹣DEN= = =

⑵设三棱锥E﹣DMN的高为h,

则VE﹣DMN= = = =

∴h=

,即 ,∴DE=

所以答案是:(1) ,(2)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·陕西)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:

T(分钟)

25

30

35

40

频数(次)

20

30

40

10


(1)求T的分布列与数学期望ET;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,记关于 的不等式 的解集为
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使 =0,则双曲线离心率的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=eax+λlnx,其中a<0,0<λ< ,e是自然对数的底数
(1)求证:函数f(x)有两个极值点;
(2)若﹣e≤a<0,求证:函数f(x)有唯一零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)ex , a∈R. (Ⅰ)当a=1时,试求f(x)的单调增区间;
(Ⅱ)试求f(x)在[1,2]上的最大值;
(Ⅲ)当a=1时,求证:对于x∈[﹣5,+∞), 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分别为边AC,AB的中点,点F,G分别为线段CD,BE的中点.将△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.点Q为线段A1B上的一点,如图2.
(Ⅰ)求证:A1F⊥BE;
(Ⅱ)线段A1B上是否存在点Q使得FQ∥平面A1DE?若存在,求出A1Q的长,若不存在,请说明理由;
(Ⅲ)当 时,求直线GQ与平面A1DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)试比较f(﹣1)与f(a)的大小;
(Ⅱ)当a≥﹣1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

同步练习册答案